Чему равен период колебаний. Гармонические колебания

Внутренняя

Так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T {\displaystyle T} (хотя могут применяться и другие, наиболее часто это τ {\displaystyle \tau } , иногда Θ {\displaystyle \Theta } и т. д.).

T = 1 ν , ν = 1 T . {\displaystyle T={\frac {1}{\nu }},\ \ \ \nu ={\frac {1}{T}}.}

Для волновых процессов период связан кроме того очевидным образом с длиной волны λ {\displaystyle \lambda }

v = λ ν , T = λ v , {\displaystyle v=\lambda \nu ,\ \ \ T={\frac {\lambda }{v}},}

где v {\displaystyle v} - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры, осциллографы . Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Энциклопедичный YouTube

  • 1 / 5

    Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

    Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

    Периоды колебаний слышимого человеком звука находятся в диапазоне

    От 5·10 −5 до 0,2

    (четкие границы его несколько условны).

    Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

    От 1,1·10 −15 до 2,3·10 −15 .

    Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

    В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

    Периоды колебаний простейших физических систем

    Пружинный маятник

    Математический маятник

    T = 2 π l g {\displaystyle T=2\pi {\sqrt {\frac {l}{g}}}}

    где l {\displaystyle l} - длина подвеса (к примеру, нити), g {\displaystyle g} - ускорение свободного падения .

    Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

    Физический маятник

    T = 2 π J m g l {\displaystyle T=2\pi {\sqrt {\frac {J}{mgl}}}}

    где J {\displaystyle J} - момент инерции маятника относительно оси вращения, m {\displaystyle m} -

    Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

    Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

    Период выражают в секундах и обозначают буквой Т .

    Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

    1 мс =0,001сек =10 -3 сек.

    1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

    1000 мкс = 1 мс.

    Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

    Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

    Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

    1000 Гц = 10 3 Гц = 1 кГц;

    1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

    1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

    Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

    Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

    Например, если частота тока равна 50 Гц, то период будет равен:

    Т = 1/f = 1/50 = 0,02 сек.

    И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

    f = 1/T=1/0,02 = 100/2 = 50 Гц

    Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

    Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

    Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

    Амплитуда переменного тока

    Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

    Угловая (циклическая) частота переменного тока.

    Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

    Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

    Рисунок 2.

    1рад = 360°/2

    Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

    ? = 6,28*f = 2f

    Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

    Рисунок 3.

    Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

    Многообразие колебательных процессов, которые окружают нас, так значительно, что просто удивляешься - а есть что-нибудь, что не колеблется? Вряд ли, ведь даже совершенно неподвижный предмет, скажем камень, который тысячи лет лежит неподвижно, все равно совершает колебательные процессы - он периодически нагревается днем, увеличиваясь, а ночью остывает и уменьшается в размерах. И самый близкий пример - деревья и ветви - неутомимо колеблются всю свою жизнь. Но то - камень, дерево. А если точно так же колеблется от напора ветра 100 этажное здание? Известно, например, что верхушка отклоняется туда-сюда на 5-12 метров, ну чем не маятник высотой 500 м. А насколько увеличивается в размерах подобное сооружение от перепадов температур? Сюда же можно причислить и вибрации корпусов машин и механизмов. Только подумайте, самолет, в котором вы летите, непрерывно колеблется. Не передумали летать? Не стоит, потому что колебания - это сущность окружающего нас мира, от них нельзя избавиться - их можно только учитывать и применять “пользы ради”.

    Как водится, изучение самых сложных областей знания (а простыми они не бывают) начинается со знакомства с простейшими моделями. И нет более простой и понятной для восприятия модели колебательного процесса, чем маятник. Именно здесь, в кабинете физики, мы впервые слышим такую загадочную фразу - “период колебаний математического маятника”. Маятник - это нить и груз. И что ж это за такой особенный маятник - математический? А все очень просто, для этого маятника предполагается, что его нить не имеет веса, нерастяжима, а колеблется под действием Дело в том, что обычно, рассматривая некий процесс, например, колебания, нельзя абсолютно полностью учесть физические характеристики, например, вес, упругость и т.д. всех участников эксперимента. В то же время влияние некоторых из них на процесс пренебрежительно мало. Например, априори понятно, что вес и упругость нити маятника при определенных условиях не оказывают заметного влияния на период колебаний математического маятника, как ничтожно малые, поэтому их влияние исключают из рассмотрения.

    Определение маятника, едва ли не самое простое из известных, звучит так: период - это время, за которое совершается одно полное колебание. Давайте сделаем метку в одной из крайних точек движения груза. Теперь каждый раз, когда точка закрывается, делаем отсчет количества полных колебаний и засекаем время, скажем, 100 колебаний. Определить длительность одного периода совсем несложно. Проделаем этот эксперимент для колеблющегося в одной плоскости маятника в следующих случаях:

    Разная начальная амплитуда;

    Разная масса груза.

    Мы получим потрясающий на первый взгляд результат: во всех случаях период колебаний математического маятника остается неизменным. Иными словами, начальная амплитуда и масса материальной точки на длительность периода влияния не оказывают. Для дальнейшего изложения есть только одно неудобство - т.к. высота груза при движении меняется, то и возвращающая сила по траектории переменная, что неудобно для расчетов. Слегка схитрим - качнем маятник еще и в поперечном направлении - он начнет описывать конусообразную поверхность, период Т его вращения останется прежним, скорость V - постоянная, по которой движется груз S = 2πr, а возвращающая сила направлена по радиусу.

    Тогда вычислим период колебаний математического маятника:

    Т = S/V = 2πr/v

    Если длина нити l значительно больше размеров груза (хотя бы в 15-20 раз), и угол наклона нити небольшой (малые амплитуды), то можно считать, что возвращающая сила P равна центростремительной силе F:
    Р = F = m*V*V/r

    С другой стороны, момент возвращающей силы и груза равны, и тогда

    P * l = r *(m*g), откуда получаем, если учесть, что P = F, следующее равенство: r * m * g/l = m*v*v/r

    Совсем нетрудно найти скорость маятника: v = r*√g/l.

    А теперь вспоминаем самое первое выражение для периода и подставляем значение скорости:

    Т=2πr/ r*√g/l

    После тривиальных преобразований формула периода колебаний математического маятника в окончательном виде выглядит так:

    Т = 2 π √ l/g

    Теперь уже ранее экспериментально полученные результаты независимости периода колебаний от массы груза и амплитуды получили свое подтверждение в аналитическом виде и совсем не кажутся такими “потрясающими”, как говорится, что и требовалось доказать.

    Кроме всего прочего, рассматривая последнее выражение для периода колебания математического маятника, можно видеть прекрасную возможность для измерения ускорения силы тяжести. Для этого достаточно собрать некий эталонный маятник в любой точке Земли и провести измерение периода его колебаний. Вот так, совсем неожиданно, простенький и незамысловатый маятник подарил нам великолепную возможность исследования распределения плотности земной коры, вплоть до поиска залежей земных ископаемых. Но это уже совсем другая история.

    (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

    Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

    Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

    Период колебаний.

    Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

    Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

    За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

    Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

    Частота колебаний.

    Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

    Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

    В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

    .

    Циклическая частота — это число колебаний, совершаемых за секунд.

    Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

    Определение и физический смысл

    Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

    Какие бывают колебания?

    Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

    Опыт с маятниками

    Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль - держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

    Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

    Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

    Обозначение величин и размерности

    Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”). Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда. А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

    Формула для математического маятника. Задача №1

    Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

    Где l - длина нити, п = 3,14, а g - ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров. Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют. В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика. Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято. Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

    Формула для пружинного маятника. Задача №2

    Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением. Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит. Вот так выглядит формула периода для пружинного маятника:

    В ней m - масса подвешенного к пружине груза, k - коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься - все-таки 2 величины из 4 являются константами - то тут добавляется 3 параметр, который может изменяться. И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие. Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

    Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь - половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k. Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту. В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

    Период свободных колебаний. Формула периода свободных колебаний

    Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

    1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

    2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

    3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.