Датчик влажности почвы: принцип работы и сборка своими руками. Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки Измеритель влажности почвы своими руками из тестера

Обои

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.


Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.


Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Обратите внимание!

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Фото датчиков влажности почвы

Обратите внимание!

Обратите внимание!

Поэт Андрей Вознесенский однажды сказал так: «лень - двигатель прогресса». Пожалуй, трудно не согласиться с этой фразой, ведь большинство электронных устройств создаются именно с той целью, чтобы облегчить нашу с вами повседневную жизнь, полную забот и всяких разных суетных дел.

Если вы сейчас читаете эту статью, то вас, наверное, очень утомляет процесс полива цветов. Ведь цветы - существа нежные, чуть их перельёшь, недовольны, забудешь полить на денёк, так всё, они вот-вот увянут. А сколько цветов в мире погибло лишь от того, что их хозяева уехали в отпуск на недельку, оставив зелёных бедолаг чахнуть в сухом горшке! Страшно представить.

Именно для предотвращения таких ужасных ситуаций придуманы системы автоматического полива. На горшок устанавливается датчик, замеряющий влажность почвы - он представляет собой для металлических прутка из нержавеющей стали, воткнутые в землю на расстоянии сантиметра друг от друга.

По проводам они подключаются к схеме, задача которой открывать реле только тогда, когда влажность упадёт ниже заданной и закрывать реле в тот момент, когда почва вновь насытится влагой. Реле, в своё очередь, управляет насосом, который качает воду из резервуара прямо под корень растению.

Схема датчика

Как известно, электропроводимость сухой и влажной почвы отличается довольно значительно, именно этот факт лежит в основе работы датчика. Резистор номиналом 10 кОм и участок почвы между прутками образуют делитель напряжения, их средняя точка подключается напрямую на вход ОУ. На другой вход ОУ напряжение подаётся со средней точки переменного резистора, т.е. его можно настраивать от нуля до напряжения питания. С его помощью выставляется порог переключения компаратора, в роли которого и работает ОУ. Как только напряжение на одном его входе превысит напряжение на другом - на выходе окажется логическая «1», загорится светодиод, транзистор откроется и включит реле. Транзистор можно применить любой, структуры PNP, подходящий по току и напряжению, например, КТ3107 или КТ814. Операционный усилитель TL072 или любой аналогичный, например, RC4558. Параллельно обмотке реле следует поставить маломощный диод, например, 1n4148. Напряжение питания схемы - 12 вольт.

Из-за длинных проводов от горшка до самой платы может возникнуть такая ситуация, что реле переключается не чётко, а начинает щёлкать с частотой переменного тока в сети, и только спустя какое-то время устанавливается в открытом положении. Для устранения этого нехорошего явления следует поставить электролитический конденсатор ёмкостью 10-100 мкФ параллельно датчику. Архив с платой . Удачной сборки! Автор - Дмитрий С.

Обсудить статью СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Наконец я воплощаю эту задумку. Я собираюсь сделать датчик влажности почвы на базе Arduino, с ЖК-дисплеем 16х2, часами реального времени (показывают время даже при отключенном питании), датчиком температуры и SD-картой (дата-логгером).

Он может быть полезен в биотехнологических/ биологических/ ботанических проектах или проектах по сохранению растительности.

Суть проекта заключается в том, что я собираюсь сделать на базе Ардуино индикатор влажности почвы для комнатных растений, который можно собрать стационарным или портативным. Он сможет проводить измерения каждые Х миллисекунд, в зависимости от настроек.

Сделать зонды более долговечными можно путем пускания тока на короткий промежуток времени (дважды за 30 миллисекунд в моем случае) и оставлять их отключенными на определенное время (например, 1 800 000 миллисекунд = (30x60x1000) = 30 минут). Чтобы задать это значение, нужно изменить задержку в самом конце файла «project.ino».

Раз у нас имеется датчик, проводящий измерения каждые Х миллисекунд, нам нужно установить предельные значения. Значения будут меняться от пиковых 1000 до средних 400, чем ниже значение, тем ниже сопротивление. Так как зонды измеряют сопротивление между двумя штырями, нужно взять значение 400, или близкое к нему, за 100%-ную влажность. А большее значение сопротивления, 1000 или выше, за уровень влажности 0%. Значит, нам нужно установить соответствие значений 1000 – 400 как 0 – 100%.

Ниже мы рассмотрим, как это сделать своими руками.

Шаг 1: Собираем все необходимые материалы


Вам понадобятся:

  • Arduino Uno (например)
  • часы реального времени DS3231 с батарейкой
  • MicroSD + SD адаптер или SD-карта
  • SD-модуль
  • ЖК-дисплей 16х2
  • датчик уровня влажности почвы YL-69
  • провода
  • потенциометр, я использовал на 47 кОм, но лишь потому, что не нашел на 10 или 20 кОм в своей коллекции
  • макетная плата

Все эти компоненты вполне доступны и совсем недороги.

Шаг 2: Соединяем компоненты



Теперь нужно соединить компоненты та, как показано на картинке. Из-за того, что модели ЖК-дисплеев и часов реального времени различаются у каждого производителя, при соединении проводов сверяйтесь с инструкцией, чтобы быть уверенным, что все соединения верны.

ЖК-дисплей

На схеме и на картинке показано корректное подключение дисплея (с названиями выводов).

Схема подключения:

  1. VSS Ground, рельса GND на макетной плате
  2. VDD рельса +5V на макетной плате
  3. V0 средний штырек потенциометра (регулируемый вывод)
  4. RS пин 10 на плате Arduino
  5. RW земля, рельса GND на макетной плате
  6. E пин 9 на плате Arduino
  7. D0 оставляем не соединенным
  8. D1 оставляем не соединенным
  9. D2 оставляем не соединенным
  10. D3 оставляем не соединенным
  11. D4 пин 7 на плате Arduino
  12. D5 пин 6 на плате Arduino
  13. D6 пин 5на плате Arduino
  14. D7 пин 3на плате Arduino
  15. A рельса +5V на макетной плате
  16. K земля, рельса GND на макетной плате

Модуль SD-карты

Схема подключения:

  1. GND GND на макетной плате
  2. +5V рельса +5V на макетной плате
  3. CS пин 4 на плате Arduino
  4. MOSI пин 11 на плате Arduino
  5. SCK пин 13на плате Arduino
  6. MISO пин 12 на плате Arduino

Датчик YL-69

Мы будем подключать только три вывода:

  1. VCC пин 2 на плате Arduino
  2. GND рельса GND земли на макетной плате
  3. A0 аналоговый вывод A0

Вывод D0 мы использовать не будем, это цифровой вывод, в нашем проекте он не нужен.

Часы реального времени DS 3231 с батарейкой

Батарейка нужна, чтобы часы продолжали работу, когда отключены от сети. Мы будем использовать следующие выводы:

  1. SCL SCL на плате Arduino
  2. SDA SCA на плате Arduino
  3. VCC рельса +5V на макетной плате
  4. GND рельса GND на макетной плате

Потенциометр

Нужен, чтобы регулировать напряжение, идущее на ЖК-дисплей. Если на дисплее нет никаких цифр, а вы уверены, что они должны быть, попробуйте покрутить потенциометр. Если все подключено правильно, цифры появятся.

Шаг 3: Устанавливаем время

При первом включении часов реального времени нужно их настроить. Потом этого делать не придется, но первая настройка имеет критическое значение. Для настройки часов вам будет нужна библиотека Sodaq DS3231 .
Можно добавить ее через опцию «добавить библиотеку» в программе Arduino. Кликните «Добавить библиотеку» и выберите тип «3231», и вы ее увидите. Теперь ее нужно установить.

Если установочного файла нет, вы можете загрузить его из интернета.
Далее загрузите скетч «исправить/правка» и измените следующие значения:
«ДатаВремя» (2011, 11, 10, 15, 18, 0, 5)
в следующем порядке:
год, месяц, число, час, минуты, секунды и день недели (от 0 до 6)
установите текущие значения.
Установка времени завершена.

Шаг 4: Код

После того, как все соединения сделаны, нужен код.
Поэтому я сделал отдельный файл со скетчем и просто огромным количеством подробных комментариев в каждой секции действий. Так как в часах реального времени DS3231 есть функция измерения температуры, я решил использовать и ее.
Вам нужно установить еще одну библиотеку, «DS3231.rar».

Стандартная версия проекта сделана для работы с монитором последовательного порта и SD-картой, это значит, что без подключения последовательного монитора она просто не будет работать. Это не удобно, особенно если вы хотите сделать портативный датчик. Поэтому я написал другой скетч, не требующий подключения последовательного монитора и вообще не использующий его. Это сильно облегчает кодирование. В первом файле находится код для портативной версии, которая не использует последовательный порт.

Важная часть кода – строки, которые обозначаются тремя буквами в правом нижнем углу дисплея:

  • «I» от «initialized», значит, что SD-карта присутствует
  • «E» от «Error», значит, что SD-карта отсутствует
  • «F» от «False», «Ложь», значит, что файл недоступен, хотя карта присутствует

Эти три буквы прописаны, чтобы помочь вам диагностировать проблемы/ошибки, если они появятся.

Файлы

Шаг 5: Выбор источника питания

Вам нужен подходящий источник питания, его выбор зависит от того, как вы планируете использовать прибор в дальнейшем.

Вы можете использовать:

  • стандартный блок питания
  • 9В аккумулятор с проводным подключением/с проводами для подключения

Выбор питания очень важен для реализации проекта, так как если вы хотите сделать прибор стационарным, лучше будет использовать блок питания. Но если вы хотите сделать портативный измеритель, то ваш единственный вариант – аккумулятор.

Можно использовать маленькую хитрость – погасить дисплей, если он в данный момент не нужен. Для этого используйте/посмотрите/прочитайте сокращенный код, чтобы понять, как погасить дисплей. Я этого не делал, так как решил, что мне это не нужно. Возможно, такая опция нужна в портативной версии измерителя, я же собрал стационарный.

Шаг 6: Выбор SD-карты

Оказалось, что не все SD-карты работают с моим SD-модулем.

Исходя из своего жизненного опыта, я могу с уверенностью ответить на два вопроса:

  1. А они все подходят для измерителя? – нет, не все. Некоторые просто не взаимодействуют с определенным модулем. Оказалось, что все карты, не взаимодействующие с моим модулем, стандарта SDHC. Стандартные и микро-SD карты работают нормально, другие не работают совсем или работают только для чтения (данные не записываются) и настройки даты и времени слетают при каждом отсоединении карты от модуля.
  2. Есть разница в использовании SD-карты или микро SD-карты с адаптером? – нет, работают одинаково.

На этом я завершаю свое руководство по этому проекту.

Шаг 7: Продолжаем!

Я продолжаю дорабатывать свой проект, и решил сделать для измерителя деревянный корпус, и еще печатную плату.

Шаг 8: Экспериментальная печатная плата (не завершено, может не работать)



Для соединения всех компонентов с использованием минимального числа проводов я решил использовать печатную/макетную плату. Я так решил потому, что плат у меня много, а проводов мало. Смысла покупать новые макетные платы, когда я могу сделать печатную, я не вижу. Так как плата у меня односторонняя, провода для соединений с нижней стороной все-таки будут нужны.

Избавит от однообразной повторяющейся работы, а избежать избытка воды поможет датчик влажности почвы - своими руками такой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте становится проводником электрических импульсов, и чем ее больше, тем ниже сопротивление. При понижении влажности сопротивление увеличивается, и это помогает отследить оптимальное время полива.

Конструкция датчика влажности почвы представляет собой два проводника, которые подключаются к слабому источнику энергии, в схеме должен присутствовать резистор. Как только количество влаги в пространстве между электродами растет, сопротивление снижается, и сила тока увеличивается.

Влага высыхает – сопротивление растет, сила тока снижается.

Поскольку электроды будут находиться во влажной среде, их рекомендуется включать через ключ, чтобы уменьшить разрушительное влияние коррозии. В обычное время система стоит выключенной и запускается только для проверки влажности нажатием кнопки.

Датчики влажности почвы такого типа можно устанавливать в теплицах – они обеспечивают контроль за автоматическим поливом , поэтому система может функционировать вообще без участия человека. В этом случае система постоянно будет находиться в рабочем состоянии, но состояние электродов придется контролировать, чтобы они не пришли в негодность под воздействием коррозии. Аналогичные устройства можно устанавливать на грядках и газонах на открытом воздухе – они позволят мгновенно получить нужную информацию.

При этом система оказывается намного точнее простого тактильного ощущения. Если человек будет считать землю полностью сухой, датчик покажет до 100 единиц влажности грунта (при оценке в десятеричной системе), сразу после полива это значение вырастает до 600-700 единиц.

После этого датчик позволит контролировать изменение содержания влажности в грунте.

Если датчик предполагается использовать на улице, его верхнюю часть желательно тщательно загерметизировать, чтобы не допустить искажения информации. Для этого ее можно покрыть водонепроницаемой эпоксидной смолой.

Конструкция датчика собирается следующим образом:

  • Основная часть – два электрода, диаметр которых составляет 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита или другого материала, защищенного от коррозии.
  • На одном конце электродов нужно нарезать резьбу, с другой стороны они делаются заостренными для более удобного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в которые вкручиваются электроды, их нужно закрепить гайками с шайбами.
  • Под шайбы нужно завести исходящие провода, после чего электроды изолируются. Длина электродов, которые будут погружаться в грунт, составляет около 4-10 см. в зависимости от используемой емкости или открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, система требует напряжения 5В. В зависимости от количества влаги в почве диапазон возвращаемого сигнала составит 0-4,2 В. Потери на сопротивление продемонстрируют количество воды в грунте.
  • Подключение датчика влажности почвы проводится через 3 провода к микропроцессору, для этой цели можно приобрести, например, Arduino. Контроллер позволит соединить систему с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности почвы, или к светодиоду, яркость освещения будет меняться при изменениях в работе датчика.

Такое самодельное устройство может стать частью автополива в системе "Умный дом", например, с использованием Ethernet-контроллера MegD-328. Web-интерфейс показывает уровень влажности в 10-битной системе: диапазон от 0 до 300 говорит о том, что земля совершенно сухая, 300-700 – в почве достаточно влаги, более 700 – земля мокрая, и полив не требуется.

Конструкция, состоящая из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого можно приспособить любую пластиковую коробочку.

В домашних условиях использование такого датчика влажности будет очень простым и вместе с тем надежным.

Применение датчика влажности грунта может быть самым разнообразным. Наиболее часто они используются в системах автополива и ручного полива растений:

  1. Их можно установить в цветочных горшках, если растения чувствительны к уровню воды в грунте. Если речь идет о суккулентах, например, о кактусах, необходимо вбирать длинные электроды, которые будут реагировать на изменение уровня влажности непосредственно у корней. Их также можно использовать для и других растений с хрупкой . Подключение к светодиоду позволит точно определить, когда пора проводить .
  2. Они незаменимы для организации полива растений . По аналогичному принципу также собираются датчики влажности воздуха, которые нужны для запуска в работу системы опрыскивания растений. Все это позволит автоматическим образом обеспечить полив растений и нормальный уровень атмосферной влажности.
  3. На даче использование датчиков позволит не держать в памяти время полива каждой грядки, электротехника сама расскажет о количестве воды в грунте. Это позволит не допустить избыточного полива, если недавно прошел дождь.
  4. Применение датчиков очень удобно и в некоторых других случаях. К примеру, они позволят контролировать влажность грунта в подвале и под домом вблизи фундамента. В квартире его можно установить под мойкой: если труба начнет капать, об этом тут же сообщит автоматика, и можно будет избежать затопления соседей и последующего ремонта.
  5. Простое устройство датчика позволит всего за несколько дней полностью оборудовать системой оповещения все проблемные участки дома и сада. Если электроды достаточно длинные, с их помощью можно будет контролировать уровень воды, к примеру, в искусственном небольшом водоеме.

Самостоятельное изготовление датчика поможет оборудовать дом автоматической системой контроля с минимальными затратами.

Комплектующие фабричного производства легко приобрести через интернет или в специализированном магазине, большую часть устройств можно собрать из материалов, которые всегда найдутся в доме любителя электротехники.

Больше информации можно узнать из видео.

Всем привет, сегодня в нашей статье мы рассмотрим как сделать датчик влажности почвы своими руками. Причиной самостоятельного изготовления может послужить износ датчика (коррозия, окисление), либо просто невозможность приобрести, долгое ожидание и желание смастерить что-либо своими руками. В моем случае желанием сделать датчик самому послужил износ, дело в том что щуп датчика при постоянной подаче напряжение взаимодействует с почвой и влагой в результате чего окисляется. Например датчики SparkFun покрывают его специальным составом (Electroless Nickel Immersion Gold) для увлечения ресурса работы. Так же что бы продлить жизнь датчику лучше подавать питание на датчик только в момент замеров.
В один "прекрасный" день я обратил внимание что моя система полива увлажняет почву без лишней надобности, при проверке датчика я извлек щуп из почвы и вот что я увидел:

Из-за коррозии между щупами появляется дополнительное сопротивление в результате которого сигнал становиться меньше и arduino считает что почва сухая. По скольку Я использую аналоговый сигнал то схему с цифровым выходом на компараторе я делать не буду для упрощения схемы.

На схеме изображен компаратор датчика влажности почвы, красным цветом отмечена часть которая преобразует аналоговый сигнал в цифровой. Не отмеченная часть это часть необходимая нам для преобразование влажности в аналоговый сигнал, мы ее и будем использовать. Чуть ниже я привел схему подключение щупов к arduino.

Левая часть схемы показывает как щупы подключаются к arduino, а правую часть (с резистором R2) я привел для того что бы показать за счет чего меняются показания АЦП. Когда щупы опущены в землю между ними образуется сопротивление (на схеме я отобразил его условно R2), если почва сухая то сопротивление бесконечно большое, а если влажное то оно стремиться к 0. Так как два сопротивления R1 и R2 образуют делитель напряжение, а средней точкой является выход (out a0) то от величины сопротивления R2 зависит напряжение на выходе. К примеру если сопротивление R2=10Kom то напряжение будет 2,5В. Можно сопротивление запаять на проводах что бы не делать дополнительных развязок, для стабильности показаний можно добавить конденсатор 0,01мкФ между - питания и out. схема подключение следующая:

Поскольку с электрической частью мы разобрались, можно перейти к механической части. Для изготовления щупов лучше использовать материал менее всего подверженного коррозии что бы продлить жизнь датчика. Можно использовать "нержавейку" или оцинкованный метал, форму можно выбрать любую, даже можно использовать два куска проволочки. Я для щупов выбрал "оцинковку", в качестве фиксирующего материал использовал небольшой кусок гетинакса. Так же стоит учесть что настояния между щупами должно быть 5мм-10мм, но не стоит делать больше. На концы оцинковки я напаял провода датчика. Вот что получилось в итоге:

Не стал делать подробный фото отчет, все и так просто. Ну и фото в работе:

Как я уже раньше указывал лучше использовать датчик только в момент измерений. Оптимальный вариант включение через транзисторный ключ, но так как потребление тока у меня составило 0,4мА можно включить на прямую. Для подачи напряжения во время замеров можно подключить контакт датчика VCC к пину ШИМ или использовать цифровой выход на момент измерений подавать высокий (HIGH) уровень, а потом устанавливать низкий. Так же стоит учесть что после подачи напряжения на датчик необходимо выждать некоторое время для стабилизации показаний. Пример через ШИМ:

Int sensor = A0; int power_sensor = 3;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
analogWrite(power_sensor, 0);
}

void loop() {

delay(10000);
Serial.print("Suhost" : ");
Serial.println(analogRead(sensor));
analogWrite(power_sensor, 255);
delay(10000);
}

Спасибо всем за внимание!