Jl. Электрическое поле Земли. Как растения реагируют на электричество Электрическое поле Земли

Штукатурка

Бовин А.А.
Краснодарский Краевой Центр ЮНЕСКО

Все живые организмы, существующие на Земле, так или иначе, в ходе длительной эволюции полностью приспособились к ее природным условиям. Адаптация произошла не только к физико-химическим условиям, таким как температура, давление, состав атмосферного воздуха, освещение, влажность, но и к естественным полям Земли: геомагнитным, гравитационным, электрическим и электромагнитным. Техногенная деятельность человека за сравнительно короткий исторический период оказала значительное воздействие на природные объекты, резко нарушив тонкий баланс между живыми организмами и условиями окружающей среды, который формировался в течение тысячелетий. Это привело к многим непоправимым последствиям, в частности, к вымиранию некоторых животных и растений, многочисленным заболеваниям и к сокращению средней продолжительности жизни людей в некоторых регионах. И только в последние десятилетия начали проводиться научные исследования, изучающие влияние природных и антропогенных факторов на человека и другие живые организмы.

Среди перечисленных факторов воздействие электрических полей на человека, на первый взгляд, не является существенным, поэтому исследования в этой области были немногочисленны. Но и до сих пор, несмотря на растущий интерес к этой проблеме, влияние электрических полей на живые организмы остается малоизученной областью.

В данной работе сделан краткий обзор работ связанных с данной проблемой.


1. ЕСТЕСТВЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ПОЛЯ

Электрическое поле Земли – это естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Электрическое поле 3емли обусловлено сложным комплексом геофизических явлений. Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно.

Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический «конденсатор» атмосфера - Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1-1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов. Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

На значительной части земной поверхности - над океанами - токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7?105 Кл) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушных масс, ветры, турбулентность - всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мВ/м, а в высокоширотной ионосфере достигает ста и более мВ/м. При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.

Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер. При обтекании магнитосферы солнечным ветром возникает ЭДС. Эта ЭДС вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы. Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными - на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мВ/м. Разность потенциалов поперёк полярной шапки составляет 20-100 кВ.

С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.

Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линий магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2-10 Гц), либо как очень низкочастотные волны (колебания с частотой 102-104 Гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мВ/км, а во время магнитных бурь усиливается до единиц и даже десятков В/км. Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.

Определённый вклад в электрическое поле Земли вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10-6 А/м2. Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мВ/м.

В работе Д.Дюткина отмечены процессы, приводящие к накоплению электрического заряда и образованию электрических полей в недрах Земли и на ее поверхности. Рассмотрен механизм возникновения круговых электрических токов в ионосфере, приводящих к возбуждению мощных электрических токов в поверхностных слоях Земли.

В основах современной геофизики отмечается, что для поддержания напряженности геомагнитного поля должен действовать механизм постоянной генерации поля. Преобладание дипольного поля и его осевой характер, а также западный дрейф с исключительно большой для геологических процессов скоростью (0,2| или 20 км/год) свидетельствуют о связи геомагнитного поля с вращением Земли. Кроме того, прямая зависимость напряженности поля от скорости вращения Земли является доказательством взаимосвязанности этих явлений.

К этому можно добавить, что к настоящему времени накоплена огромная статистическая информация, связывающая изменение параметров солнечной активности, геомагнитного поля, скорости вращения Земли с временной периодичностью и интенсивностью различных природных процессов. Однако пока не выработан ясный физический механизм взаимосвязи всех этих процессов.

В работах профессора В.В.Суркова рассматривается природа ультранизкочастотных (УНЧ) электромагнитных полей. Описан механизм возбуждения УНЧ (до 3 Гц) электромагнитных полей в ионосферной плазме и атмосфере, указаны источники УНЧ электромагнитных полей в земле и атмосфере.

Гипотезы о возникновении электрических и магнитных полей Земли рассмотрены в научно-популярной статье доктора физико-математических наук Г.Фонарева. Согласно гипотезе академика В.В.Шулейкина электрические токи в водах Мирового океана создают дополнительное магнитное поле, которое налагается на основное. По мнению В.В. Шулейкина, электрические поля в океане должны быть порядка сотен или даже тысяч микровольт на метр – это довольно сильные поля. Советский ученый-ихтиолог А.Т. Миронов в начале 30-х годов, изучая поведение рыб, обнаружил у них хорошо выраженный электротаксис – способность реагировать на электрическое поле. Это навело его на мысль, что в морях и океанах должны существовать электрические (теллурические) поля. Хотя гипотезы В.В. Шулейкина и А.Т. Миронова па практике не подтвердились, они имеют все же не только исторический интерес: обе они сыграли важную стимулирующую роль в постановке многих новых научных задач.


2. ЖИВЫЕ ОРГАНИЗМЫ В ЕСТЕСТВЕННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

В настоящее время проведено множество исследований, касающихся влиянию электрических полей на живые организмы - от отдельных клеток до человека. Чаще всего рассматривается влияние электромагнитных и магнитных полей. Переменным электромагнитном полям и их воздействий на живые организмы посвящена большая доля все работ, так как эти поля, в основном, имеют антропогенное происхождение.

Постоянные электрические поля природного происхождения и их значение для живых организмов до сих пор исследованы недостаточно.

Наиболее просто и доходчиво о влиянии постоянного электрического поля Земли на человека, животных и растения изложено в работе А.А. Микулина.

Согласно новейшим исследованиям, земной шар заряжен отрицательно, то есть избыточным количеством свободных электрических зарядов - около 0,6 миллиона кулонов. Это очень большой заряд.

Отталкиваясь друг от друга силами Кулона, электроны стремятся скопиться на поверхности земного шара. На большом расстоянии от земли, охватывая ее со всех сторон, находится ионосфера, состоящая из большого количества положительно заряженных ионов. Между землей и ионосферой существует электрическое поле.

При ясном небе на расстоянии метра от земли разность потенциалов достигает примерно 125 вольт. Поэтому мы имеем право утверждать, что электроны, стремящиеся под действием поля вырваться с поверхности земли, проникали в голые ступни и электропроводные концы нервов мышц первобытного человека, ходившего по земле босиком, не носившего сапог на электронепроницаемой искусственной подошве. Это проникновение электронов продолжалось только до тех пор, пока общий свободный отрицательный заряд человека не достигал потенциала заряда на участке поверхности земли, где он находился.

Под действием поля заряды, проникшие в тело человека, стремились вырваться наружу, где и захватывались, рекомбинировали с положительно заряженными ионами атмосферы, непосредственно соприкасавшейся с открытыми кожными покровами головы и рук. Тело человека, его живые клетки и все функциональные зависимости метаболизма миллионы лет были приспособлены природой для здоровой жизни человека в условиях околоземного электрического поля и электрообмена, выраженного, в частности, в притоке электронов в ступни и оттоке, рекомбинации, электронов в положительно заряженные ионы атмосферы.

Далее автор делает важный вывод: соприкасавшиеся с землей мышцы животных и человека устроены природой так, что они должны нести в себе отрицательный электрозаряд, соответствующий величине заряда земной поверхности, на которой живое существо находилось в данный момент. Величина отрицательного заряда человеческого тела должна меняться в зависимости от напряженности электрического поля в данной точке земли в данный момент.

Причин к изменению напряженности электрического поля очень много. Одна из главных - облачность, несущая сильнейшие местные электрозаряды. Они достигают в момент образования молний десятков миллионов вольт. В живом организме на поверхности кожи напряженность электрозарядов достигает иногда такой величины, что появляются искры при соприкосновении с металлом, при снятии нейлонового белья.

Новейшие наблюдения сотрудников Института общественной и коммунальной гигиены показали, что при перемене погоды самочувствие больного человека зависит от величины местной напряженности поля земли, так же как и от изменения барометрического давления, в большинстве случаев сопутствующего изменению напряженности поля. Но так как в быту мы не имеем приборов для измерения величины напряжения поля земли, то и объясняем состояние самочувствия не основной причиной - изменением напряженности поля, а следствием - падением барометрического давления.

Опыты показали, что любая умственная или физическая работа, выполняемая человеком, который изолирован от земли, сопровождается уменьшением его отрицательного природного заряда. Однако ни одно из описанных изменений электрического потенциала не наблюдается и не замеряется даже самыми точными приборами, если тело человека соприкасается с землей или связано с землей проводником. Недостаток электронов тотчас же ликвидируется. На любом осциллографе легко заметить эти токи и определить их величину.

Какие же изменения в жизни человека обусловили его отход от естественного первобытного бытия? Человек надел сапоги, выстроил дома, изобрел токонепроводящнй линолеум, резиновые подошвы, залил улицы городов и дороги асфальтом. Человек сегодня гораздо меньше соприкасается с электрозарядами земли. В этом одна из причин таких “общедоступных” болезней, как головные боли, раздражительность, неврозы, сердечнососудистые заболевания, быстрая утомляемость, плохой сон и пр. В прошлом земские врачи прописывали больным прогулки босиком по росе. В Англии и сейчас функционирует несколько обществ “босоножек”. Это лечение нельзя назвать иначе, как “заземление тела пациента”.

В Институте физиологии растений АН СССР доктором биологических наук Э. Журбицким поставлен ряд опытов по изучению влияния электрического поля на растения. Усиление поля до известной величины ускоряет рост. Помещение растений в противоестественное поле - наверху отрицательный пояс, а в земле положительный - рост угнетает. Журбицкий считает, что чем больше разность потенциалов между всходами и атмосферой, тем интенсивнее протекает фотосинтез. В оранжереях урожай можно увеличить на 20-30%. Вопросами влияния электричества на растения занимается ряд научных учреждений: Центральная генетическая лаборатория имени И. В. Мичурина, сотрудники ботанического сада МГУ и др.

Представляет интерес работа Р.А.Новицкого, посвященная восприятию электрических полей и токов рыбами, а также генерация электрических полей сильноэлектрическими рыбами (пресноводный электрический угорь, электрические скат и сом, американский звездочет). В работе отмечено, что слабоэлектрические рыбы обладают высокой чувствительностью к электрическим полям, это позволяет им находить и различать в воде объекты, определять соленость воды, использовать разряды других рыб с информационной целью в межвидовых и внутривидовых отношениях. Слабые электрические токи и магнитные поля воспринимаются, главным образом, рецепторами кожи рыб. Многочисленные исследования показали, что почти у всех слабо- и сильноэлектрических рыб электрорецепторами служат производные органов боковой линии. У акул и скатов электрорецептивную функцию выполняют так называемые ампулы Лоренцини - особые слизистые железы в коже. Более сильные электромагнитные поля воздействуют непосредственно на нервные центры водных организмов.


3. Техногенные электрические поля и их влияние на живые организмы

Технический прогресс, как известно, принес человечеству не только облегчение и удобство в производстве и быту, но и создал ряд серьезных проблем. В частности, возникла проблема защиты человека и других организмов от сильных электромагнитных, магнитных и электрических полей, создаваемых различными техническими устройствами. Позже появилась проблема защиты человека от длительного воздействия слабых электромагнитных полей, которое, как оказалось, также наносит вред жизнедеятельности человека. И только в последнее время стали обращать внимание и проводить соответствующие исследования по оценке влияния на живые организмы экранирования естественных геомагнитных и электрических полей.

Влияние мощных постоянных и переменных электрических полей техногенного происхождения на живые организмы изучается сравнительно давно. Источниками таких полей являются, прежде всего, высоковольтные линии электропередач (ЛЭП).

Электрическое поле, создаваемое линиями высоковольтных ЛЭП, оказывает неблагоприятное влияние на живые организмы. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. В этом случае на изолированном от земли проводящем объемном теле наводится потенциал, зависящий от соотношения емкости тела на землю и на провода ЛЭП. Чем меньше емкость на землю (чем толще, например, подошва обуви), тем больше наведенный потенциал, который может составлять несколько киловольт и даже достигать 10 кВ.

В опытах, проведенных многими исследователями, обнаружено четкое пороговое значение напряженности поля, при котором наступает разительное изменение реакции подопытного животного. Оно определено равным 160 кВ/м, меньшая напряженность поля сколько-нибудь заметного вреда живому организму не наносит.

Напряженность электрического поля в рабочих зонах ЛЭП 750 кВ на высоте человеческого роста примерно в 5-6 раз меньше опасных значений. Выявлено неблагоприятное воздействие электрического поля промышленной частоты на персонал ЛЭП и подстанций напряжением 500 кВ и выше; при напряжении 380 и 220 кВ это действие выражено слабо. Но при всех напряжениях действие поля зависит от продолжительности нахождения в нем.

На основании исследований разработаны соответствующие санитарные нормы и правила, где указываются минимально допустимые расстояния расположения жилых построек от стационарных излучающих объектов, как, например, линий электропередач. Эти нормы предусматривают также и максимально допустимые (предельные) уровни излучения для других энергоопасных объектов. В ряде случаев, для защиты человека применяются громоздкие металлические экраны, в виде листов, сеток и других приспособлений.

Однако многочисленные исследования ученых в различных странах (Германия, США, Швейцария и др.) показали, что такие меры безопасности не могут полностью защитить человека от влияния вредных электромагнитных излучений (ЭМИ). При этом было установлено, что слабые электромагнитные поля (ЭМП), мощность которых измеряется тысячными долями Ватт, не менее опасны, а в ряде случаев и более опасны, чем излучения большой мощности. Ученые объясняют это тем, что интенсивность слабых электромагнитных полей соизмерима с интенсивностью излучений самого человеческого организма, его внутренней энергетики, которая формируется в результате функционирования всех систем и органов, включая клеточный уровень. Такими низкими (нетепловыми) интенсивностями характеризуются излучения электронных бытовых приборов, имеющихся сегодня в каждом доме. Это, главным образом, компьютеры, телевизоры, мобильные телефоны, СВЧ-печи и т.п. Они то и являются источниками вредных, т.н. техногенных ЭМИ, которые обладают свойством накапливаться в организме человека, нарушая при этом его биоэнергетическое равновесие, и в первую очередь, т.н. энергоинформационный обмен (ЭНИО). А это, в свою очередь, приводит к нарушению нормального функционирования основных систем организма. Многочисленные исследования в области биологического действия электромагнитных полей (ЭМП) позволили определить, что наиболее чувствительными системами организма человека являются: нервная, иммунная, эндокринная и половая. Биологический эффект ЭМП в условиях длительного многолетнего воздействия может привести к развитию отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания и др.

В работе В.М. Коршунова сообщается, что в 1970-е годы специалисты вернулись к эффектам слабых и очень слабых магнитных и электрических полей на модельные физико-химические системы, биологические объекты и организм человека. Механизмы, вызывающие эти эффекты, «работают» на уровне молекул, а порой атомов, вследствие чего очень трудноуловимы. Тем не менее, ученые экспериментально продемонстрировали и теоретически объяснили магнитные и спиновые эффекты. Выяснилось, что хотя энергия магнитного взаимодействия на несколько порядков меньше энергии теплового движения, но на той стадии реакции, где собственно все и происходит, тепловое движение не успевает помешать действию магнитного поля.

Это открытие заставляет по-новому взглянуть и на сам феномен жизни на Земле, которая возникла и развивалась в условиях геомагнитного поля. В лаборатории было показано влияние сравнительно слабых (на порядок-два выше геомагнитного) постоянных и переменных магнитных полей на выход первичной реакции фотосинтеза - фундамента всей экосистемы нашей планеты. Это влияние оказалось небольшим (меньше процента), но важно другое: доказательство его реального существования.

В частности, в этой же работе отмечено, что бытовые электроприборы, окружающие нас, при определенном положении относительно нашего тела (или нашего тела относительно приборов) могут влиять на электрохимические процессы, протекающие в клетках организма.


4. ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЙ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Для исследования и контроля электромагнитной ситуации необходимо иметь соответствующие приборы – магнитометры для измерения характеристик магнитных полей и измерители напряженности электрического поля.

Поскольку потребность в таких приборах невелика (пока), то, в основном, подобные приборы выпускают небольшими сериями для двух целей: 1 – для контроля санитарных норм по технике безопасности; 2 – для целей разведочной геофизики.

К примеру, федеральным государственным унитарным предприятием "НПП "Циклон-Тест" серийно выпускается измеритель электрического поля ИЭП-05, который предназначен для измерения среднеквадратического значения напряженности переменных электрических полей, создаваемых различными техническими средствами.

Измерители напряженности электрического и магнитного полей предназначены для контроля норм по электромагнитной безопасности в области охраны природы, безопасности труда и населения.

В пределах своих технических характеристик прибор может использоваться для измерения напряженности электрической составляющей электромагнитных полей независимо от природы их возникновения, в том числе при контроле по СанПиН 2.2.4.1191-03 "Электромагнитные поля в производственных условиях" и СанПиН 2.1.2.1002-00 "Санитарно-эпидемиологические требования к жилым зданиям и помещениям".

Прибор имеет прямой отсчет измеряемой величины поля (в реальном масштабе времени) и может быть использован для электромагнитного мониторинга, контроля пространственного распределения полей и динамики измерения этих полей во времени.

Принцип действия прибора прост: в дипольной антенне электрическое поле наводит разность потенциалов, которая измеряется прибором типа миливольтметра.

Предприятие НПП “Циклон – Тест“ выпускает и другие приборы, предназначенные для измерения параметров электрических, магнитных и электромагнитных полей.

В тоже время, в геофизике издавна применяются методы электроразведки полезных ископаемых. Электрическая разведка представляет собой группу методов разведочной геофизики, основанной на изучении естественных или искусственно возбуждаемых электрических и электромагнитных полей в земной коре. Физическая основа электроразведки - различие горных пород и руд по их удельному электрическому сопротивлению, диэлектрической проницаемости, магнитной восприимчивости и другим свойствам.

Среди различных методов электроразведки следует отметить методы магнитотеллурического поля. С помощью этих методов исследуется переменная составляющая естественного электромагнитного поля Земли. Глубина проникновения магнитотеллурического поля в землю благодаря скин-эффекту зависит от его частоты. Поэтому поведение низких частот поля (сотые и тысячные доли Гц) отражает строение земной коры на глубинах в несколько км, а более высоких частот (десятки и сотни Гц) - на глубинах в несколько десятков м. Исследование зависимости измеренных электрических и магнитных компонент поля от его частоты позволяет изучать геологическое строение исследуемой территории.

Электроразведочная аппаратура состоит из источников тока, источников электромагнитного поля и измерительных устройств. Источники тока - батареи сухих элементов, генераторы и аккумуляторы; источники поля - заземлённые на концах линии или незаземлённые контуры, питаемые постоянным или переменным током. Измерительные устройства состоят из входного преобразователя (датчика поля), системы промежуточных преобразователей сигнала, преобразовывающей сигнал для его регистрации и фильтрующей помехи, и выходного устройства, обеспечивающего измерение сигнала. Электроразведочная аппаратура, предназначенная для изучения геологического разреза на глубине, не превышающей 1-2 км, изготавливается в виде лёгких переносимых комплектов.

Для научно-исследовательских целей чаще всего изготавливается специальная аппаратура с необходимыми параметрами.

В работе рассмотрены наиболее точные и чувствительные спектральные методы для измерения сверхслабых магнитных полей. Однако здесь есть важное утверждение, что на основе атомной спектроскопии может быть также построен стандарт напряженности электрического поля. В работе отмечается, что можно с высокой точностью измерять абсолютное значение напряженности электрического поля, используя эффект Штарка. Для этого необходимо использовать атомы с отличным от нуля орбитальным моментом в основном состоянии. Однако до сих пор, как утверждает автор, потребность в таких измерениях не стала достаточно острой, чтобы соответствующая техника была развита.

Напротив, именно сейчас и настало время для создания сверхчувствительных и точных приборов для измерения естественных электрических полей.


ЗАКЛЮЧЕНИЕ

Результаты многочисленных исследований показывают, что невидимые, неосязаемые электромагнитные, магнитные и электрические поля оказывают серьезное воздействие на человеческий и другие организмы. Влияние сильных полей изучено достаточно широко. Влияние слабых полей, на которое раньше не обращали внимание, оказалось ничуть не менее важным для живых организмов. Но исследования в этой области только начались.

Современный человек все больше времени проводит в помещениях железобетонного типа, в кабинах автомобилей. Но практически нет исследований, связанных с оценкой влияния на здоровье людей экранирующего действия помещений, металлических кабин автомобилей, самолетов и т.п. Особенно это касается экранирования естественного электрического поля Земли. Следовательно, такие исследования в настоящее время являются весьма актуальными.

«Современное человечество, как и все живое, обитает в своеобразном электромагнитном океане, поведение которого определяется теперь не только естественными причинами, но и искусственным вмешательством. Нам нужны опытные лоцманы, досконально знающие скрытые течения этого океана, его отмели и острова. И требуются еще более строгие навигационные правила помогающие оберегать путников от электромагнитных бурь», - так образно описал нынешнюю ситуацию один из первопроходцев отечественной магнитобиологии Ю.А. Холодов.


ЛИТЕРАТУРА

  1. Сизов Ю. П.. Электрическое поле Земли. Статья в БСЭ, Издательство «Советская энциклопедия», 1969 - 1978 г.
  2. Дюдкин Д. Будущее энергетики – геоэлектричество? Энергетика и промышленность России - избранные материалы, выпуск 182.
    http://subscribe.ru/archive/
  3. Сурков В.В. Область научных интересов В.В.Суркова.
    http://www.surkov.mephi.ru
  4. Фонарев Г. История двух гипотез. Наука и жизнь, 1988, № 8.
  5. Лаврова А.И., Плюснина Т.Ю., Лобанов, А.И.,Старожилова Т.К., Ризниченко Г.Ю. Моделирование воздействия электрического поля на систему ионных потоков в примембранной области клетки водоросли Chara.
  6. Алексеева Н.Т., Федоров В.П., Байбаков С.Е. Реакция нейронов различных отделов ЦНС на воздействие электромагнитного поля // Электромагнитные поля и здоровье человека: Материалы 2-й междунар. конф. "Пробл. электромагн. безопасности человека. Фундамент. и прикл. исслед. Нормирование ЭМП: философия, критерии и гармонизация", 20-24 сент. 1999 г., Москва. - М., 1999. - с.47-48.
  7. Гурвич Е.Б., Новохатская Э.А., Рубцова Н.Б. Смертность населения, проживающего вблизи энергообъекта электропередачи напряжением 500 киловольт // Мед. труда и пром. экол. - 1996. - N 9. - С.23-27. - Библиогр.: 8 назв.
  8. Гурфинкель Ю.И., Любимов В.В. Экранированная палата в клинике для защиты пациентов с ишемической болезнью сердца от воздействия геомагнитных возмущений // Мед. физика. - 2004. - N 3(23). - С.34-39. - Библиогр.: 23 назв.
  9. Микулин А.А.. Активное долголетие - моя борьба со старостью. Глава 7. Жизнь в электрическом поле.
    http://www.pseudology.org
  10. Курилов Ю.М.. Альтернативный источник энергии. Электрическое поле Земли – источник энергии.
    Научно-технический портал.
  11. Новицкий Р.А. Электрические поля в жизни рыб. 2008 г.
    http://www.fion.ru>
  12. Любимов В.В., Рагульская М.В. Электромагнитные поля, их биотропность и нормы экологической безопасности. Журнал депонированных рукописей №3 март, 2004.
    Труды научно-технической конференции - ПРОМТЕХЭКСПО XXI.
  13. Птицына Н.Г., Дж.Виллорези, Л.И.Дорман, Н.Юччи, М.И.Тясто. "Естественные и технологические низкочастотные магнитные поля как факторы, потенциально опасные для здоровья". ”Успехи физических наук" 1998, N 7 (том 168, стр.767-791).
  14. Грин Марк, к.т.н. Это должен знать каждый.
    health2000.ru
  15. Коршунов В.М.. Опасности электричества.
    www.korshunvm.ru
  16. ФГУП "НПП "Циклон-Тест".
    http://www.ciklon.ru
  17. Якубовский Ю.В.. Электрическая разведка. Статья в БСЭ, Издательство «Советская энциклопедия», 1969 - 1978 г.
  18. Александров Е. Б. . Приложения атомной спектроскопии к задачам фундаментальной метрологии. Физико-технический институт им. А. Ф. Иоффе РАН, С.-Петербург, Россия

Биологическое влияние электрических и магнитных полей на организм людей и животных достаточно много исследова­лось. Наблюдаемые при этом эффекты, если они и возника­ют, до сих пор не ясны и трудно поддаются определению, поэтому эта тема остается по-прежнему актуальной.

Магнитные поля на нашей планете имеют двоякое проис­хождение- естественное и антропогенное. Естественные маг­нитные поля, так называемые магнитные бури, зарождаются в магнитосфере Земли. Антропогенные магнитные возмуще­ния охватывают меньшую территорию, чем природные, зато их проявление значительно интенсивнее, а следовательно, приносит и более ощутимый ущерб. В результате технической деятельности человек создает искусственные электромагнит­ные поля, которые в сотни раз сильнее естественного магнит­ного поля Земли. Источниками антропогенных излучений являются: мощные радиопередающие устройства, электрифици­рованные транспортные средства, линии электропередачи (рис. 2.1).

Один из наиболее сильных возбудителей электромагнит­ных волн-токи промышленной частоты (50 Гц). Так, на­пряженность электрического поля непосредственно под лини­ей электропередачи может достигать нескольких тысяч вольт на метр почвы, хотя из-за свойства снижения напряженности почвой уже при удалении от линии на 100 м напряженность резко падает до нескольких десятков вольт на метр.

Исследования биологического воздействия электрического поля обнаружили, что уже при напряженности 1 кВ/м оно оказывает неблагоприятное влияние на нервную систему чело­века, что в свою очередь ведет к нарушениям эндокринного аппарата и обмена веществ в организме (меди, цинка, желе­за и кобальта), нарушает физиологические функции: ритм сердечных сокращений, уровень кровяного давления, актив­ность мозга, ход обменных процессов и иммунную актив­ность.

Начиная с 1972 г. появились публикации, в которых рас­сматривалось влияние на людей и животных электрических полей с величинами напряженности более 10 кВ/м.

Напряженность магнитного поля пропорциональна току и обратно пропорциональна расстоянию; напряженность электрического поля пропорциональна напряжению (заряду) и обратно пропорциональна расстоянию. Парамегры этих по­лей зависят от класса напряжения, конструктивных особен­ностей и геометрических размеров высоковольтной ЛЭП. По­явление мощного и протяженного источника электромагнит­ного поля приводит к изменению тех естественных факторов, при которых сформировалась экосистема. Электрические и магнитные поля могут индуцировать поверхностные заряды и токи в теле человека (рис. 2.2). Исследования показали,

что максимальный ток в теле человека, индуцированный этектрическим полем, намного выше, чем ток, вызванный магнитным полем. Так, вредное воздействие магнитного поля проявляется лишь при его напряженности около 200 А/м.чго бывает на расстоянии 1-1,5 м от проводов фазы линии и опасно только для обслуживающего персонала при работах под напряжением. Это обстоятельство позволило сделать вы^-вод об отсутствии биологического влияния магнитных полей промышленной частоты на людей и животных, находящихся под ЛЭП Таким образом, электрическое поле ЛЭП является главным биологически действенным фактором протяженной электропередачи, который может оказаться барьером на пу­ти миграции движения разных видов водной и сухопутной фауны.

Исходя из конструктивных особенностей электропередачи (провисания провода) наибольшее влияние поля проявляет­ся в середине пролета, где напряженность для линий сверх- и ультравысокого напряжения на уровне роста человека со­ставляет 5-20 кВ/м и выше в зависимости от класса напря­жения и конструкции линии (рис. 1.2). У опор, где высота подвеса проводов наибольшая и сказывается экранирующее влияние опор, напряженность поля наименьшая. Так как под проводами ЛЭП могут находиться люди, животные, тран­спорт, то возникает необходимость оценки возможных пос­ледствий длительного и кратковременного пребывания живых существ в электрическом поле различной напряженности. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. На­веденный потенциал в этом случае может достигать 10 кВ, а импульс тока через организм при касании к заземленно­му предмету (ветке куста, травинке) 100-200 мкА. Такие импульсы тока безопасны для организма, но неприятные ощущения заставляют копытных животных избегать трассы высоковольтных ЛЭП в летнее время .

В действии электрического поля на человека доминирую­щую роль играют протекающие через его тело токи. Это оп­ределяется высокой проводимостью тела человека, где преоб­ладают органы с циркулирующей в них кровью и лимфой. В настоящее время экспериментами на животных и людях-добровольцах установлено, что плотность тока проводимо­стью 0,1 мкА/см 2 и ниже не влияет на работу мозга, так как импульсные биотоки, обычно протекающие в мозгу, сущест­венно превышают плотность такого тока проводимости. При />1 мкА/см 2 в глазах человека наблюдается мелькание све­товых кругов, более высокие плотности токов уже захватыва­ют пороговые значения стимуляции сенсорных рецепторов, а также нервных и мышечных клеток, что ведет к появлению испуга, непроизвольным двигательным реакциям. В случае касания человека к изолированным от земли объектам в зо­не электрического поля значительной интенсивности, плот­ность тока в зоне сердца сильно зависит от состояния «под­стилающих» условий (вида обуви, состояния почвы и т. д.), но уже может достигать этих величин. При максимальном токе, соответствующемЕтах ==l5 кВ/м (6,225 мА); известной доле этого тока, втекающе­го через область головы (около 1/3), и площади головы (около 100 см 2) плотность токаj <0,1 мкА/см 2 , что и под­тверждает допустимость принятой в СССР напряженности 15 кВ/м под проводами воздушной линии.

Для здоровья человека проблема состоит в определении связи между плотностью тока, наведенного в тканях, и маг­нитной индукцией внешнего поля, В. Вычисление плотности тока

осложняется тем, что его точный путь зависит от распределе­ния проводимости у в тканях тела.

Так, удельную проводимость мозга определяют =0,2 см/м, а сердечной мышцы==0,25 см/м. Если принять радиус головы 7,5 см, а сердца 6 см, то произведениеR по­лучается одинаковым в обоих случаях. Поэтому можно да­вать одно представление для плотности тока на периферии сердца и мозга.

Определено, что безопасная для здоровья магнитная ин­дукция составляет около 0,4 мТл при частоте 50 или 60 Гц. В магнитных полях (от 3 до 10 мТл; f =10-60 Гц) наблю­далось возникновение световых мерцаний, аналогичных тем, которые возникают при надавливании на глазное яблоко.

Плотность тока, индуцированного в теле человека элект­рическим полем с величиной напряженности Е, вычисляется таким образом:

с различными коэффициентами k для области мозга и серд­ца. Значениеk =3 10 -3 см/Гцм. По данным ученых ФРГ напряженость поля, при которой вибрацию волос ощущают 5% испытуемых мужчин, составляет 3 кВ/м и для 50% муж­чин, подвергшихся испытаниям, она равна 20 кВ/м. В насто­ящее время отсутствуют данные о том, что ощущения, выз­ванные действием поля, создают какое-либо неблагоприятное влияние. Что касается связи плотности тока с биологическим влиянием, то можно выделить четыре области, представлен­ные в табл. 2.1

Последняя область значения плотности тока относится к временам воздействия порядка одного сердечного цикла, т. е. приблизительно 1 с для человека Для более коротких экс­позиций пороговые значения выше. Для определения порогового значения напряженности по­ля были выполнены физиологические исследования на людях в лабораторных условиях при напряженности от 10 до 32 кВ/м. Установлено, что при напряженности 5 кВ/м 80%

Таблица 2.1

людей не испытывают болевых ощущений при разрядах в случае касания заземленных предметов. Именно эта величи­на была принята в качестве нормативной при работах в электроустановках без применения средств защиты. Зависи­мость допустимого времени пребывания человека в электри­ческом поле с напряженностью Е более порогового аппрокси­мируется уравнением

Выполнение этого условия обеспечивает самовосстановле­ние физиологического состояния организма в течение суток без остаточных реакций и функциональных или патологичес­ких изменений.

Ознакомимся с основными результатами исследований биологических влияний электрических и магнитных полей, проведенных советскими и зарубежными учеными .

Глобальный конденсатор

В природе существует совершенно уникальный альтернативный источник энергии, экологически чистый, возобновляемый, простой в использовании, который до сих пор нигде не используется. Источник этот — атмосферный электрический потенциал.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли (Рис.1).

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли , которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей, решением которой мы и займемся.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности эл. поля Земли E направлен в общем случае вниз. В своих рассуждениях мы будем использовать только вертикальную составляющую этого вектора. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая называется кулоновской силой. Если умножить величину заряда на напряженность эл. поля в этой точке, то получим как раз величину кулоновской силы Fкул.. Эта кулоновская сила толкает положительные заряды вниз, к земле, а отрицательные — вверх, в облака.

Проводник в электрическом поле

Установим на поверхности Земли металлическую мачту и заземлим ее. Внешнее электрическое поле моментально начнет двигать отрицательные заряды (электроны проводимости) вверх, к верхушке мачты, создавая там избыток отрицательных зарядов. А избыток отрицательных зарядов на верхушке мачты создаст свое электрическое поле, направленное навстречу внешнему полю. Наступает момент, когда эти поля сравняются по величине, и движение электронов прекращается. Это значит, что в проводнике, из которого сделана мачта, электрическое поле равно нулю.

Так работают законы электростатики.


Положим высота мачты h = 100 м., средняя напряженность по высоте мачты Еср. = 100 В/м.

Тогда разность потенциалов (э.д.с.) между Землей и верхушкой мачты будет численно равна: U = h * Eср. = 100 м * 100 В/м = 10 000 вольт. (1)

Это — совершенно реальная разность потенциалов, которую можно измерить. Правда, обычным вольтметром с проводами измерить ее не удастся — в проводах возникнет точно такая же э.д.с., как и в мачте, и вольтметр покажет 0. Эта разность потенциалов направлена противоположно вектору напряженности Е электрического поля Земли и стремится вытолкнуть электроны проводимости из верхушки мачты вверх, в атмосферу. Но этого не происходит, электроны не могут покинуть проводник. У электронов недостаточно энергии для того, чтобы покинуть проводник, из которого сделана мачта. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт — величина весьма незначительная. Но электрон в металле не может приобрести такую энергию между столкновениями с кристаллической решеткой металла и поэтому остается на поверхности проводника.

Возникает вопрос: что произойдет с проводником, если мы поможем избыточным зарядам на верхушке мачты покинуть этот проводник?

Ответ простой: отрицательный заряд на верхушке мачты уменьшится, внешнее электрическое поле внутри мачты уже не будет скомпенсировано и начнет снова двигать электроны проводимости вверх к верхнему концу мачты. Значит, по мачте потечет ток. И если нам удастся постоянно удалять избыточные заряды с верхушки мачты, в ней постоянно будет течь ток. Теперь нам достаточно разрезать мачту в любом, удобном нам месте и включить туда нагрузку (потребитель энергии) — и электростанция готова.


На рис.3 показана принципиальная схема такой электростанции. Под действием электрического поля Земли электроны проводимости из земли движутся по мачте через нагрузку и далее вверх по мачте к эмиттеру, который освобождает их из поверхности металла верхушки мачты и отправляет их в виде ионов в свободное плавание по атмосфере. Электрическое поле Земли в полном соответствии с законом Кулона поднимает их вверх до тех пор, пока они на своем пути не будут нейтрализованы положительными ионами, которые всегда опускаются вниз из ионосферы под действием того же поля.

Таким образом, мы замкнули электрическую цепь между обкладками глобального электрического конденсатора, который в свою очередь подключен к генератору G, и включили в эту цепь потребитель энергии (нагрузку). Остается решить один важный вопрос: каким образом удалять избыточные заряды с верхушки мачты?

Конструкция эмиттера

Простейшим эмиттером может служить плоский диск из листового металла с множеством иголок, расположенных по его окружности. Он «насажен» на вертикальную ось и приведен во вращение.

При вращении диска набегающий влажный воздух срывает электроны с его иголок и таким образом освобождает их из металла.

Электростанция с подобным эмиттером уже существует. Правда, ее энергию никто не использует, с нею борются.
Это — вертолет, несущий на длинном металлическом стропе металлическую конструкцию при монтаже высоких строений. Здесь есть все элементы электростанции, изображенной на рис.3, за исключением потребителя энергии (нагрузки). Эмиттером являются лопасти винтов вертолета, которые обдуваются потоком влажного воздуха, мачтой служит длинный стальной строп с металлической конструкцией. И рабочие, которые устанавливают эту конструкцию на место, прекрасно знают, что прикасаться к ней голыми руками нельзя — «ударит током». И дейсвительно, они в этот момент становятся нагрузкой в цепи электростанции.

Безусловно, возможны и другие конструкции эмиттеров, более эффективные, сложные, основанные на разных принципах и физических эффектах см. рис. 4-5.

Эмиттера в виде готового изделия сейчас не существует. Каждый заинтересованный в этой идее вынужден самостоятельно сконструировать себе свой эмиттер.

В помощь таким творческим людям автор приводит ниже свои соображения по конструкции эмиттера.

Наиболее перспективными представляются следующие конструкции эмиттеров.

Первый вариант исполнения эмиттера


Молекула воды имеет хорошо выраженную полярность и может легко захватить свободный электрон. Если обдувать паром заряженную отрицательно металлическую пластину, то пар будет захватывать с поверхности пластины свободные электроны и уносить их с собой. Эмиттер представляет собой щелевое сопло, вдоль которого помещен изолированный электрод А и на который подается положительный потенциал от источника И. Электрод А и острые края сопла образуют небольшую заряженную емкость. Свободные электроны собираются на острых краях сопла под воздействием положительного изолированного электрода А. Проходящий через сопло пар срывает электроны с краев сопла и уносит их в атмосферу. На рис. 4 изображено продольное сечение этой конструкции. Поскольку электрод А изолирован от внешней среды, тока в цепи источника э.д.с. нет. И этот электрод нужен здесь только для того, чтобы вместе с острыми краями сопла создать в этом промежутке сильное электрическое поле и концентрировать электроны проводимости на краях сопла. Таким образом, электрод А с положительным потенциалом является своего рода активирующим электродом. Меняя на нем потенциал, можно добиться нужной величины силы тока эмиттера.

Возникает очень важный вопрос — сколько пара нужно подавать через сопло и не получится ли так, что всю энергию станции придется израсходовать на превращение воды в пар? Проведем небольшой подсчет.

В одной граммолекуле воды (18 мл) содержится 6,02 * 1023 молекул воды (число Авогадро). Заряд одного электрона равен 1,6 * 10 (- 19) Кулона. Перемножив эти величины, получим, что на 18 мл воды можно разместить 96 000 Кулонов электрического заряда, а на 1 литре воды — более 5 000 000 Кулонов. А это значит, что при токе 100 А одного литра воды хватит для работы установки в течение 14 часов. Для превращения в пар такого количества воды потребуется совсем небольшой процент вырабатываемой энергии.

Конечно, прицепить к каждой молекуле воды электрон — задача вряд ли выполнимая, но мы здесь определили предел, к которому можно постоянно приближаться, совершенствуя конструкцию устройства и технологии.

Кроме того, расчеты показывают, что энергетически выгоднее продувать через сопло не пар, а влажный воздух, регулируя его влажность в нужных пределах.

Второй вариант исполнения эмиттера

На вершине мачты установлен металлический сосуд с водой. Сосуд соединен с металлом мачты надежным контактом. В середине сосуда установлена стеклянная капиллярная трубка. Уровень воды в трубке выше, чем в сосуде. Это создает электростатический эффект острия — в верхней части капиллярной трубки создается максимальная концентрация зарядов и максимальная напряженность электрического поля.

Под действием электрического поля вода в капиллярной трубке поднимется и будет распыляться на мелкие капельки, унося с собой отрицательный заряд. При определенной небольшой силе тока вода в капиллярной трубке закипит, и уже пар будет уносить заряды. А это должно увеличить ток эмиттера.

В таком сосуде можно установить несколько капиллярных трубок. Сколько потребуется воды — расчеты см. выше.

Третий вариант исполнения эмиттера. Искровой эмиттер.

При пробое искрового промежутка вместе с искрой из металла выскакивает облако электронов проводимости.


На рис.5 показана принципиальная схема искрового эмиттера. От генератора высоковольтных импульсов отрицательные импульсы поступают на мачту, положительные — на на электрод, который образует искровой промежуток с верхушкой мачты. Получается нечто подобное автомобильной свече зажигания, но по устройству значительно проще.
Генератор высоковольтных импульсов принципиально мало чем отличается от обычной бытовой газовой зажигалки китайского производства с питанием от одной пальчиковой батарейки.

Главное достоинство такого устройства — возможность регулировать ток эмиттера с помощью частоты разрядов, величины искрового промежутка, можно сделать несколько искровых промежутков и пр.

Генератор импульсов можно установить в любом удобном месте, совсем не обязательно на верхушке мачты.

Но существует один недостаток — искровые разряды создают радиопомехи. Поэтому верхушку мачты с искровыми промежутками нужно экранировать цилиндрической сеткой, обязательно изолированной от мачты.

Четвертый вариант исполнения эмиттера

Еще одна возможность — создать эмиттер на принципе прямой эмиссии электронов из материала эмиттера. Для этого нужен материал с очень низкой работой выхода электрона. Такие материалы существуют давно, например, паста из оксида бария-0,99 эв. Возможно, сейчас есть что-либо получше.

В идеале это должен быть комнатнотемпературный сверхпроводник (КТСП), которых пока не существует в природе. Но по разным сообщениям он должен скоро появиться. Здесь вся надежда на нанотехнологии.

Достаточно поместить на верхушку мачты кусок КТСП — и эмиттер готов. Проходя по сверхпроводнику, электрон не встречает сопротивления и очень быстро приобретает энергию, необходимую для выхода из металла (около 5 эв.)

И еще одно важное замечание. По законам электростатики иапряженность электрического поля Земли наиболее высока на возвышенностях — на вершинах холмов, сопок, гор и т. п. В низинах, впадинах и углублениях она минимальна. Поэтому такие устройства лучше строить на самых высоких местах и подальше от высоких строений или же устанавливать их на крышах самых высоких строений.

Еще хорошая идея — поднять проводник с помощью аэростата. Эмиттер, конечно, нужно устанавливать на верху аэростата. В таком случае можно получить достаточно большой потенциал для самопроизвольной эмиссии электронов из металла, придав ему форму отрия, и, значит, никаких сложных эмиттеров в этом случае не потребуется.

Существует еще одна хорошая возможность получить эмиттер. В промышленности применяется электростатическая окраска металла. Распыленная краска, вылетая из распылителя, несет на себе электрический заряд, в силу чего и оседает на окрашиваемый металл, на который подается заряд противоположного знака. Технология отработана.

Такое устройство, которое заряжает распыленную краску, как раз и является настоящим эмиттером эл. зарядов. Остается только приспособить его к описанной выше установке и заменить краску водой, если возникнет необходимомть в воде.

Вполне возможно, что влаги, всегда содержащейся в воздухе, будет достаточно для работы эмиттера.

Не исключено, что в промышленности существуют и другие подобные устройства, которые легко можно превратить в эмиттер.

Выводы

В результате наших действий мы подключили потребитель энергии к глобальному генератору электрической энергии. К отрицательному полюсу — Земле — мы подключились с помощью обычного металлического проводника (заземления), а к положительному полюсу — ионосфере — с помощью весьма специфического проводника — конвективного тока. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Это и обычные конвективные восходящие струи, которые несут отрицательные заряды в облака, это и смерчи (торнадо). которые тащат к земле сильно заряженную положительными зарядами облачную массу, это и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. И такие токи достигают очень больших значений.

Если мы создадим достаточно эффективный эмиттер, который сможет освобождать из верхушки мачты (или нескольких мачт), положим, 100 кулонов зарядов в секунду (100 ампер.), то мощность построенной нами электростанции будет равна 1000 000 ватт или 1 мегаватт. Вполне достойная мощность!

Такая установка незаменима в отдаленных поселениях, на метеостанциях и других удаленных от цивилизации местах.

Из вышесказанного можно сделать следующие выводы:

Источник энергии является исключительно простым и удобным в использовании.

На выходе получаем самый удобный вид энергии — электроэнергию.

Источник экологически чист: никаких выбросов, никакого шума и т.п.

Установка исключительно проста в изготовлении и эксплуатации.

Исключительная дешевизна получаемой энергии и еще масса других достоинств.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 20% от его среднего значения.

В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой.

Курилов Юрий Михайлович

Электризация почвы и урожай

В целях повышения продуктивности сельскохозяйственных растений человечество с давних пор обращается к почве. То, что электричество может повысить плодородие верхнего пахотного слоя земли, то есть усилить его способность формировать большой урожай, опытами учёных и практиков уже доказано давно. Но как это сделать лучше, как увязать электризацию почвы с существующими технологиями её обработки? Вот те проблемы, которые не решены до конца и сейчас. При этом нельзя забывать, что почва - объект биологический. И при неумелом вмешательстве в этот сложившийся организм, особенно столь мощным средством, каким является электричество, можно нанести ему непоправимый ущерб.

При электризации почвы видят, прежде всего, способ влияния на корневую систему растений. К настоящему времени накоплено много данных, показывающих, что слабый электрический ток, пропущенный через почву, стимулирует в растениях ростовые процессы. Но результат ли это прямого действия электричества на корневую систему, и через неё и на все растение, или итог физико-химических изменений в почве? Определённый шаг к пониманию проблемы сделали в свое время ленинградские учёные.

Проведенные ими опыты были весьма изощрёнными, ведь предстояло выяснить глубоко спрятанную истину. Брали небольшие полиэтиленовые трубки-камеры с отверстиями, в которые высаживали проростки кукурузы. Трубки заполняли питательным раствором с полным набором необходимых проросткам химических элементов. И через него с помощью инертных в химическом отношении платиновых электродов пропускали постоянный электрический ток величиной 5-7 мкА/кв. см. Объём раствора в камерах поддерживали на одном уровне, добавляя дистиллированную воду. Воздух, а он крайне нужен корням, систематически подавали (в виде пузырьков) из специальной газокамеры. За составом питательного раствора непрерывно следили датчики того или иного элемента - ионоселективные электроды. И по зарегистрированным изменениям делали вывод, что и в каком количестве поглощено корнями. Все другие каналы утечки химических элементов были перекрыты. Параллельно работал контрольный вариант, в котором всё было абсолютно таким же, за исключением одного - через раствор электрический ток не пропускали. И что же?

Не прошло и 3 часов с начала эксперимента, а разница между контрольным и электрическим вариантами уже выявилась. В последнем элементы питания поглощались корнями активнее. Но, возможно, дело не в корнях, а в ионах, которые под действием внешнего тока стали быстрее передвигаться в растворе? Для ответа на этот вопрос в одном из опытов предусмотрели измерение биопотенциалов проростков и в определённое время включали в «работу» гормоны роста. Почему? Да потому, что они без всякой дополнительной электростимуляции изменяют активность поглощения корнями ионов и биоэлектрическую характеристику растений.

По окончанию эксперимента авторами были сделаны следующие выводы: «Пропускание слабого электрического тока через питательный раствор, в который погружена корневая система проростков кукурузы, оказывает стимулирующее действие на поглощение растениями ионов калия и нитратного азота из питательного раствора». Значит, всё-таки электричество стимулирует деятельность корневой системы? Но как, через какие механизмы? Для полной убедительности в корневом эффекте электричества поставили ещё один опыт, в котором также был питательный раствор, были корни, теперь уже огурцов, измеряли также биопотенциалы. И в этом эксперименте работа корневой системы при электростимуляции улучшалась. Однако до разгадки путей её действия ещё далеко, хотя уже познано, что электрический ток оказывает на растение как прямое, так и косвенное воздействие, степень влияния которых определяется целым рядом факторов.

Тем временем исследования эффективности электризации почвы расширялись и углублялись. Сегодня их, как правило, проводят в теплицах или в условиях вегетационных опытов. Это и понятно, поскольку только так можно уйти от ошибок, которые невольно допускаются тогда, когда эксперименты ставились в полевых условиях, в которых невозможно наладить контроль за каждым отдельным фактором.

Весьма обстоятельные опыты с электризацией почвы в своё время в Ленинграде провёл научный работник В. А. Шустов. В слабо подзолистую суглинистую почву он добавил 30% перегноя и 10% песка и через эту массу перпендикулярно корневой системе между двумя стальными или угольными электродами (лучше себя показали последние) пропускал ток промышленной частоты плотностью 0,5 мА/кв. см. Урожай редиса вырос на 40-50%. А вот постоянный ток такой же плотности снизил сбор этих корнеплодов по сравнению с контролем. И лишь понижение его плотности до 0,01-0,13 мА/кв. см вызвало повышение урожая до уровня, полученного при использовании переменного тока. В чём тут причина?

Используя меченый фосфор, установили, что переменный ток выше указанных параметров благотворно влияет на поглощение растениями этого важного электрического элемента. Проявилось также и положительное действие постоянного тока. При его плотности 0,01 мА/кв. см получен урожай примерно равный тому, что был получен при применении переменного тока плотностью 0,5 мА/ кв. см. Кстати, из четырех испытываемых частот переменного тока (25, 50, 100 и 200 Гц) лучшей оказалась частота в 50 Гц. Если же растения прикрывали заземлёнными экранирующими сетками, то урожай овощных культур значительно снижался.

В Армянской НИИ механизации и электрификации сельского хозяйства применяли электричество для стимуляции растений табака. Изучали широкий спектр плотностей тока, пропускаемого в поперечном сечении корнеобитаемого слоя. У переменного тока он был 0,1; 0,5; 1,0; 1,6; 2,0; 2,5; 3,2 и 4,0 а/кв. м, у постоянного - 0,005; 0,01; 0,03; 0,05; 0,075; 0,1; 0,125 и 0,15 а/кв. м. В качестве питательного субстрата использовали смесь, состоящую на 50% из чернозёма, на 25% из перегноя и на 25% из песка. Наиболее оптимальными оказались плотности тока 2,5 а/кв. м для переменного и 0,1 а/кв. м для постоянного при непрерывной подаче электричества в течение полутора месяцев. При этом выход сухой массы табака в первом случае превышал контроль на 20, а во втором - на 36%.

Или вот томаты. Экспериментаторы создавали в их корнеобитаемой зоне постоянное электрическое поле. Растения развивались намного быстрее контрольных, особенно в фазу бутонизации. У них была больше площадь листовой поверхности, повысилась активность фермента пероксидазы, усиливалось дыхание. В результате прибавка урожая составила 52%, и произошло это в основном за счёт увеличения размеров плодов и их количества на одном растении.

Постоянный ток, пропускаемый через почву, благотворно влияет и на плодовые деревья. Это подметил ещё И. В. Мичурин и успешно применял его ближайший помощник И. С. Горшков, который в своей книге «Статьи по плодоводству» (Москва, Изд. Сельск. литер., 1958 г.) посвятил данному вопросу целую главу. В указанном случае плодовые деревья быстрее проходят детский (учёные говорят «ювенильный») этап развития, повышается их холодостойкость и устойчивость к другим неблагоприятным факторам среды, в итоге увеличивается урожайность. Чтобы не быть голословным, приведу конкретный пример. Когда через почву, на которой росли молодые хвойные и лиственные деревья, непрерывно в течение светлого периода суток пропускали постоянный ток, в их жизни происходил целый ряд примечательных явлений. В июне-июле опытные деревья отличались более интенсивным фотосинтезом, что явилось результатом стимулирования электричеством роста биологической активности почвы, повышения скорости движения почвенных ионов, лучшего поглощения их корневыми системами растений. Более того, ток, протекающий в почве, создавал большую разность потенциалов между растениями и атмосферой. А это, как уже говорилось, фактор сам по себе благоприятный для деревьев, особенно молодых. В следующем опыте, проведённом под плёночным укрытием, при непрерывном пропускании постоянного тока фитомасса однолетних сеянцев сосны и лиственницы увеличилась на 40-42%. Если бы такой темп прироста сохранить в течение нескольких лет, то нетрудно представить, какой огромной выгодой бы это обернулось.

Интересный опыт по влиянию электрического поля между растениями и атмосферой провели учёные Института физиологии растений АН СССР. Они установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 В), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Нужно отметить, что опытов по электризации почвы проведено очень много, как у нас, так и за рубежом. Установлено, что это воздействие изменяет передвижение различных видов почвенной влаги, способствует размножению ряда трудноусвояемых для растений веществ, провоцирует самые разнообразные химические реакции, в свою очередь изменяющие реакцию почвенного раствора. При электровоздействии на почву слабыми токами в ней лучше развиваются микроорганизмы. Определены и параметры электрического тока, оптимальные для разнообразных почв: от 0,02 до 0,6 мА/кв. см для постоянного тока и от 0,25 до 0,5 мА/кв. см для переменного тока. Однако на практике ток указанных параметров даже на аналогичных почвах может и не дать прибавки урожая. Это объясняется тем многообразием факторов, которые возникают при взаимодействии электричества с почвой и возделываемыми на ней растениями. В почве, принадлежащей к одной и той же классификационной категории, в каждом конкретном случае могут быть совершенно различные концентрации водорода, кальция, калия, фосфора, других элементов, могут быть несхожие условия аэрации, а, следовательно, и прохождение собственных окислительно-восстановительных процессов и т.д. Наконец, не надо забывать о постоянно изменяющихся параметрах атмосферного электричества и земного магнетизма. Многое также зависит от применяемых электродов и способ электровоздействия (постоянное, кратковременное и т.д.). Короче говоря, надо в каждом конкретном случае пробовать и подбирать, пробовать и подбирать...

Вследствие этих и ряда других причин электризация почвы, хотя и способствует повышению урожайности сельскохозяйственных растений, и нередко довольно значительному, но широкого практического применения пока ещё не приобрела. Понимая это, учёные ищут новые подходы к данной проблеме. Так, предложена обработка почвы электрическим разрядом для фиксации в ней азота - одного из главных «блюд» для растений. Для этого в почве и в атмосфере создают высоковольтный маломощный непрерывный дуговой разряд переменного тока. И там, где он «работает», часть атмосферного азота переходит в нитратные формы, усвояемые растениями. Однако происходит это, конечно, на небольшом участке поля и достаточно затратно.

Более эффективен другой способ увеличения количества усвояемых форм азота в почве. Он заключается в применение кистевого электрического разряда, создаваемого непосредственно в пахотном слое. Кистевой разряд - это одна из форм газового разряда, возникающая при атмосферном давлении на металлическом остриё, к которому подведён высокий потенциал. Величина потенциала зависит от положения другого электрода и от радиуса кривизны острия. Но в любом случае он должен измеряться десятком киловольт. Тогда на кончике острия возникает кистеобразный пучок перемежающихся и быстро смешивающихся электрических искр. Такой разряд вызывает образование в почве большого количества каналов, в которые проходит значительное количество энергии и, как показали лабораторные и полевые эксперименты, способствует увеличению в почве усвояемых растениями форм азота и, как следствие, повышению урожая.

Ещё более эффективно использование при обработке почвы электрогидравлического эффекта, заключающегося в создании электрического разряда (электрической молнии) в воде. Если поместить в сосуд с водой порцию почвы и произвести в этом сосуде электрический разряд, то произойдёт дробление частиц почвы с высвобождением большого количества необходимых для растений элементов и связывание атмосферного азота. Такое воздействие электричества на свойства почвы и на воду очень благотворно сказывается на росте растений и их урожайности. Учитывая большую перспективу этого способа электризации почвы, я попробую рассказать о нем более подробно в отдельной статье.

Весьма любопытен другой способ электризации почвы - без внешнего источника тока. Это направление развивает кировоградский исследователь И. П. Иванько. Он рассматривает почвенную влагу как своеобразный электролит, находящийся под воздействием электромагнитного поля Земли. На границе раздела металл-электролит, в данном случае металлопочвенный раствор, возникает гальвано-электрический эффект. В частности, при нахождении в почве стального провода на его поверхности в результате окислительно-восстановительных реакций образуются катодные и анодные зоны, происходит постепенное растворение металла. В итоге на межфазных границах возникает разность потенциалов, достигающая 40-50 мВ. Образуется она и между двумя проводами, уложенными в почве. Если провода находятся, например, на расстоянии 4 м, то разность потенциалов составляет 20-40 мВ, но сильно изменяется в зависимости от влажности и температуры почвы, её механического состава, количества удобрений и других факторов.

Электродвижущую силу между двумя проводами в почве автор назвал «агро-ЭДС», ему удалось не только её измерить, но и объяснить общие закономерности, по которым она образуется. Характерно, что в определённые периоды, как правило, при смене фаз Луны и изменении погоды, стрелка гальванометра, при помощи которого замеряют возникающий между проводами ток, резко меняет положение - сказывается сопровождающие подобные явления перемены в состоянии электромагнитного поля Земли, передающиеся почвенному «электролиту».

Исходя из этих представлений, автор предложил создавать электролизуемые агрономические поля. Для чего специальный тракторный агрегат щелевателем-проводоукладчиком распределяет сматываемый с барабана стальной провод диаметром 2,5 мм по дну щели на глубину 37 см. Пройдя гон, тракторист включает гидросистему на подъём, рабочий орган выглубляется из почвы, а провод обрубается на высоте 25 см от поверхности почвы. Через 12 м по ширине поля операция повторяется. Заметим, что размещенная таким образом проволока не мешает проведению обычных агротехнических работ. Ну, а если потребуется, то стальные проводки легко удалить из почвы при помощи узла размотки и намотки мерной проволоки.

Экспериментами установлено, что при таком способе на электродах наводится «агро-ЭДС» величиной 23-35 мВ. Поскольку электроды имеют разную полярность, между ними через влажную почву возникает замкнутая электрическая цепь, по которой течёт постоянный ток плотностью от 4 до 6 мкА/кв. см анода. Проходя через почвенный раствор как через электролит, этот ток поддерживает в плодородном слое процессы электрофореза и электролиза, благодаря чему необходимые растениям химические вещества почвы переходят из трудноусвояемых в легкоусвояемые формы. Кроме того, под воздействием электрического тока все растительные остатки, семена сорняков, отмершие животные организмы быстрее гумифицируются, что ведёт к росту плодородия почвы.

Как видно, в данном варианте электризация почвы возникает без искусственного источника энергии, лишь в результате действия электромагнитных сил нашей планеты.

Между тем за счёт этой «даровой» энергии в экспериментах получена весьма высокая прибавка урожая зерна - до 7 ц/га. Учитывая простоту, доступность и неплохую эффективность предложенной технологии электризации, садоводы-любители, заинтересовавшиеся этой технологией, могут прочесть о ней более подробно в статье И. П. Иванько «Использование энергии геомагнитных полей», опубликованной в журнале «Механизация и электрификация сельского хозяйства» № 7 за 1985 г. При внедрении указанной технологии автор советует располагать проволоки в направлении с севера на юг, а возделываемые над ними сельскохозяйственные растения с запада на восток.

Данной статьей я попытался заинтересовать садоводов-любителей в применении в процессе возделывания различных растений помимо известных технологий ухода за почвой электротехнологии. Относительная простота большинства способов электризации почвы, доступная для лиц, получивших знания по физике даже в объёме программы средней школы, делает возможным их применение и проверку практически на каждом садовом участке при выращивании овощей, плодовых и ягодных, цветочно-декоративных, лекарственных и других растений. Я тоже экспериментировал с электризацией почвы постоянным током в 60-е годы прошлого века при выращивании сеянцев и саженцев плодовых и ягодных культур. В большинстве опытов наблюдалась стимуляция роста, причем, иногда очень значительная, особенно при выращивании сеянцев вишни и сливы. Так что, уважаемые садоводы-любители, попробуйте проверить какой-нибудь способ электризации почвы в предстоящем сезоне на какой-либо культуре. А вдруг у вас всё получится хорошо, и всё это может оказаться одной из золотых жил?

В. Н. Шаламов


Наша Земля и другие планеты имеют как магнитное поля, так и электрическое. О том что Земля имеет электрическое поле, было известно лет 150 тому назад. Электрический заряд планет в солнечной системе создается Солнцем благодаря эффектам электростатической индукции и ионизации вещества планет. Магнитное поле образуется за счет осевого вращения заряженных планет. Среднее магнитное поле Земли и планет зависит от средней поверхностной плотности отрицательного электрического заряда, угловой скорости осевого вращения и радиуса планеты. Поэтому Землю (и другие планеты), по аналогии с прохождением света через линзу, следует рассматривать как электрическую линзу, а не источник электрического поля.

Значит, Земля связана с Солнцем с помощью электрической силы, само Солнце связано с центром Галактики с помощью магнитной силы, а центр Галактики связан с центральным сгущением галактик посредством электрической силы.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли.

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но, несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

Это означает, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Как и в любом заряженном конденсаторе, в земном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности электрического поля Земли E направлен в общем случае вниз. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая толкает положительные заряды вниз, к земле, а отрицательные - вверх, в облака.

Все это можно увидеть в природных явлениях. На Земле постоянно бушуют ураганы, тропические шторма и множество циклонов. Например, подъем воздуха во время урагана происходит в основном за счет разности плотности воздуха на периферии урагана и в его центре - тепловой башне, но не только. Часть подъемной силы (примерно одну треть) обеспечивает электрическое поле Земли, согласно закону Кулона.

Океан во время шторма представляет собой огромное поле, усыпанное остриями и ребрами, на которых концентрируются отрицательные заряды и напряженность электрического поля Земли. Испаряющиеся молекулы воды в таких условиях легко захватывают отрицательные заряды и уносят их с собой. А электрическое поле Земли в полном соответствии с законом Кулона двигает эти заряды вверх, добавляя воздуху подъемную силу.

Таким образом, глобальный электрический генератор Земли расходует часть своей мощности на усиление атмосферных вихрей на планете - ураганов, штормов, циклонов и пр. Кроме того, такой расход мощности никак не сказывается на величине электрического поля Земли.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 30% от его среднего значения. В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы электрическое поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади, непосредственно под грозовой ячейкой и в течение короткого времени.