Относительная погрешность анализа пример решения. Вычисление абсолютной и относительной погрешности

Оборудование

На практике обычно числа, над которыми производятся вычисления, являются приближенными значениями тех или иных величин. Для краткости речи приближенное значение величины называют приближенным числом. Истинное значение величины называют точным числом. Приближенное число имеет практическую ценность лишь тогда, когда мы можем определить, с какой степенью точности оно дано, т.е. оценить его погрешность. Напомним основные понятия из общего курса математики.

Обозначим: x - точное число (истинное значение величины), а -приближенное число (приближенное значение величины).

Определение 1 . Погрешностью (или истинной погрешностью) приближенного числа называется разность между числом x и его приближенным значением а . Погрешность приближенного числа а будем обозначать . Итак,

Точное число x чаще всего бывает неизвестно, поэтому найти истинную и абсолютную погрешности не представляет возможным. С другой стороны, бывает необходимо оценить абсолютную погрешность, т.е. указать число, которого не может превысить абсолютная погрешность. Например, измеряя длину предмета данным инструментом, мы должны быть уверены в том, что погрешность полученного числового значения не превысит некоторого числа, например 0,1 мм. Другими словами, мы должны знать границу абсолютной погрешности. Эту границу будем называть предельной абсолютной погрешностью.

Определение 3 . Предельной абсолютной погрешностью приближенного числа а называется положительное число такое, что , т.е.

Значит, х по недостатку, - по избытку. Применяют также такую запись:

. (2.5)

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее число тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи (с 1-2 значащими цифрами) число , удовлетворяющее неравенству (2.3).



Пример. Определить истинную, абсолютную и предельную абсолютную погрешности числа а = 0,17, взятого в качестве приближенного значения числа .

Истинная погрешность:

Абсолютная погрешность:

За предельную абсолютную погрешность можно принять число и любое большее число. В десятичной записи будем иметь: Заменяя это число большим и возможно более простым по записи, примем:

Замечание . Если а есть приближенное значение числа х , причем предельная абсолютная погрешность равна h , то говорят, что а есть приближенное значение числа х с точностью до h.

Знания абсолютной погрешности недостаточно для характеристики качества измерения или вычисления. Пусть, например, получены такие результаты при измерении длины. Расстояние между двумя городами S 1 =500 1 км и расстояние между двумя зданиями в городе S 2 =10 1 км. Хотя абсолютные погрешности обоих результатов одинаковы, однако существенное значение имеет то, что в первом случае абсолютная погрешность в 1 км приходится на 500 км, во втором - на 10 км. Качество измерения в первом случае лучше, чем во втором. Качество результата измерения или вычисления характеризуется относительной погрешностью.

Определение 4. Относительной погрешностью приближенного значения а числа х называется отношение абсолютной погрешности числа а к абсолютному значению числа х :

Определение 5. Предельной относительной погрешностью приближенного числа а называется положительное число такое, что .

Так как , то из формулы (2.7) следует, что можно вычислить по формуле

. (2.8)

Для краткости речи в тех случаях, когда это не вызывает недоразумений, вместо “предельная относительная погрешность” говорят просто “относительная погрешность”.

Предельную относительную погрешность часто выражают в процентах.

Пример 1 . . Полагая , можем принять = . Производя деление и округляя (обязательно в сторону увеличения), получим =0,0008=0,08%.

Пример 2. При взвешивании тела получен результат: p=23,4 0,2 г. Имеем =0,2. . Производя деление и округляя, получим =0,9%.

Формула (2.8) определяет зависимость между абсолютной и относительной погрешностями. Из формулы (2.8) следует:

. (2.9)

Пользуясь формулами (2.8) и (2.9), мы можем, если известно число а , по данной абсолютной погрешности находить относительную погрешность и наоборот.

Заметим, что формулы (2.8) и (2.9) часто приходится применять и тогда, когда мы еще не знаем приближенного числа а с требуемой точностью, а знаем грубое приближенное значение а . Например, требуется измерить длину предмета с относительной погрешностью не выше 0,1%. Спрашивается: возможно ли измерить длину с нужной точностью при помощи штангенциркуля, позволяющего измерить длину с абсолютной погрешностью до 0,1 мм? Пусть мы еще не измеряли предмет точным инструментом, но знаем, что грубое приближенное значение длины - около 12 см. По формуле (1.9) находим абсолютную погрешность:

Отсюда видно, что при помощи штангенциркуля возможно выполнить измерение с требуемой точностью.

В процессе вычислительной работы часто приходится переходить от абсолютной погрешности к относительной, и наоборот, что делается с помощью формул (1.8) и (1.9).

Абсолютная и относительная погрешности

С приближенными числами нам приходится иметь дело при вычислениях значений каких-либо функций, либо при измерениях и обработке физических величин, получаемых в результате экспериментов. В том и другом случае нужно уметь правильно записывать значения приближенных чисел и их погрешность.

Приближенным числом а называется число, которое незначительно отличается от точного числа А и заменяет последнее в вычислениях . Если известно, что а < А , то а называется приближенным значением числа А по недостатку; если а > А , – то по избытку. Если а есть приближенное значение числа А , то пишут а ≈ А .

Под ошибкой или погрешностью А приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближенным, т.е.

Чтобы получить точное число А , нужно к приближенному значению числа прибавить его ошибку , т.е.

Во многих случаях знак ошибки неизвестен. Тогда целесообразно пользоваться абсолютной погрешностью приближенного числа

Из приведенной записи следует, что абсолютной погрешностью приближенного числа а называется модуль разности между соответствующими точным числом А и его приближенным значением а , т.е.

Точное число А чаще всего бывает неизвестно, поэтому найти ошибку или абсолютную погрешность не представляется возможным. В этом случае полезно вместо неизвестной теоретической погрешности ввести ее оценку сверху, так называемую предельную абсолютную погрешность.

Под предельной абсолютной погрешностью приближенного числа а понимается всякое число , не меньшее абсолютной погрешности этого числа, т.е.

Если в последней записи вместо использовать формулу (1,1), то можно записать

(1.2)

Отсюда следует, что точное число А заключено в границах

Следовательно, разность есть приближение числа А по недостатку, а – приближение числа А по избытку. В этом случае для краткости пользуются записью

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее, чем положительное число, тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи число ,удовлетворяющее неравенству (1.2).

Например, если в результате измерения получили длину отрезка l = 210 см ± 0,5 см., то здесь предельная абсолютная погрешность = 0,5 см, а точная величина l отрезка заключена в границах 209,5см≤l≤ 210,5см.

Абсолютная погрешность недостаточна для характеристики точности измерения или вычисления. Так, например, если при измерении длин двух стержней получены результаты l 1 = 95,6см ± 0,1см и l 2 =8,3 ± 0,1 см, то, несмотря на совпадение предельных абсолютных погрешностей, точность первого измерения выше, чем второго. Отсюда видно, что для точности измерений важнее не абсолютная, а относительная погрешность, которая зависит от значений измеряемых величин.

Относительной погрешностью δ приближенного числа а называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа А, т.е.

Аналогично предельной абсолютной погрешности используют также определение и для предельной относительной погрешности. Предельной относительной погрешностью данного приближенного числа а называется всякое число, не меньшее относительной погрешности этого числа

т.е. откуда следует

Таким образом, за предельную абсолютную погрешность числа а можно принять

Так как на практике А≈а ,то вместо формулы (1.3) часто пользуются формулой

1.2 Десятичная запись приближенных чисел

Всякое положительное десятичное число а может быть представлено в виде конечной или бесконечной дроби

где – десятичные цифры числа а ( = 0,1,2,...,9), причем старшая цифра а m – число разрядов в записи целой части числа а , а n – число разрядов в записи дробной части числа а . Например:

5214,73... = 5 · 10 3 + 2 · 10 2 + 1 · 10 1 + 4 · 10 0 +7 · 10 -1 + 3 · 10 -2 ... (1.5)

Каждая цифра , стоящая на определенном месте в числе а , написанном в виде (1.4), имеет свой вес. Так, цифра, стоящая на первом месте (т.е. ), весит 10 m , на втором – 10 m -1 и т.д.

На практике мы обычно не пользуемся записью в форме (1.4), а используем сокращенную запись чисел в виде последовательности коэффициентов при соответствующих степенях 10. Так, например, в записи (1.5) мы пользуемся левой от знака равенства формой, а не правой, представляющей разложение этого числа по степеням 10.

На практике преимущественно приходится иметь дело с приближенными числами в виде конечных десятичных дробей. Для корректного сравнения различных вычислительных и экспериментальных результатов вводят понятие значащей цифры в записи результата. Все сохраняемые десятичные значения (i = m , m- 1,…, m-n+ 1), отличные от нуля, и нуль, если он стоит между значащими цифрами или является представителем сохраненного десятичного разряда в конце числа называются значащими цифрами приближенного числа а . При этом нули, связанные с множителем 10 n к значащим не относятся.

При позиционном обозначении числа а в десятичной системе счисления иногда приходится вводить лишние нули в начале или в конце числа. Например,

а = 7·10 -3 + 0·10 -4 + 1·10 -5 + 0·10 -6 = 0,00 7010

b = 2·10 9 + 0·10 8 + 0·10 7 + 3·10 6 + 0·10 5 = 2003000000.

Такие нули (в приведенных примерах они подчеркнуты) не считаются значащими цифрами.

Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля , а также и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда. Все остальные нули, входящие в состав приближенного числа и служащие лишь для обозначения его десятичных разрядов, не причисляются к значащим числам.

Например, в числе 0,002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими цифрами, так как первый из них находиться между значащими цифрами 2 и 8, а второй указывает на то, что в приближенном числе сохранен десятичный разряд 10 -6 . В случае, если в данном числе 0,002080 последняя цифра не является значащей, то это число должно быть записано в виде 0,00208. С этой точки зрения числа 0,002080 и 0,00208 не равноценны, так как первое из них содержит четыре значащих цифры, а второе лишь три.



Кроме понятия значащей цифры важным является понятие верной цифры. Следует отметить, что это понятие существует в двух определениях – в узком и широком смыслах .

Определение (в широком смысле). Говорят, что n первых значащих цифр числа (считая слева направо) являются верными в широком смысле, если абсолютная погрешность этого числа не превосходит единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес 1 равен 10; 1 10 0 – здесь вес 1 равен 1; 1 10 -1 – здесь вес 1 равен 0,1; 1 10 -2 – здесь вес 1 равен 0,01 и т.д.).

Определение (в узком смысле). Говорят, что n первых значащих цифр приближенного числа являются верными, если абсолютная погрешность этого числа не превосходит половины единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес половины 1 равен 5; 1 10 0 – здесь вес половины 1 равен 0,5; 1 10 -1 – равен 0,05 и т.д.).

Например, в приближенном числе исходя из первого определения, значащие цифры 3,4 и 5 верные в широком смысле, а цифра 6 – сомнительна. Исходя из второго определения, значащие цифры 3 и 4 являются верными в узком смысле, а цифры 5 и 6 – сомнительные. Важно подчеркнуть, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр .

Как в теоретических рассуждениях, так и в практических применениях большее применение находит определение верной цифры в узком смысле.

Таким образом, если для приближенного числа а, заменяющего число А , известно, что

(1.6)

то, по определению, первые n цифр этого числа являются верными.

Например, для точного числа А = 35,97 число а = 36,00 является приближенным с тремя верными знаками. К этому результату приводят следующие рассуждения. Так как абсолютная погрешность нашего приближенного числа составляет величину 0,03, то по определению она должна удовлетворять условию

(1.7)

В нашем приближенном числе 36,00 цифра 3 является первой значащей цифрой (т.е. ), поэтому m = 1. Отсюда очевидно, что условие (1.7) будет выполняться при n = 3.

Обычно принято при десятичной записи приближенного числа писать только верные цифры. Если известно, что данное приближенное число записано правильно, то по записи можно определить предельную абсолютную погрешность. Именно при правильной записи абсолютная погрешность не превышает половины младшего разряда, который следует за последним верным разрядом (или половины единицы последнего верного разряда, что одно и то же)

Например, даны приближенные числа, записанные правильно: а = 3,8; b = 0,0283; с = 4260. Согласно определению, предельные абсолютные погрешности этих чисел будут: = 0,05; = 0,00005; = 0,5.

Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным G u и истинным G значениями величины, определяемая по формуле:

Δ=ΔG=G u -G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/G u ·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/G норм ·100%

где G норм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/G норм ·100%, если ΔG m =const

где ΔG m – наибольшая возможная абсолютная погрешность прибора;

G k – конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δ m =±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·G норм /G u

б) для наибольшей приведенной погрешности

δ=±γ m ·G норм /G u

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением G н , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U , при измерении тока C = I , буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения γ m = 1,0 % , U н = G норм, G k = 450 В , измеряют напряжение U u , равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γ m =±2,5 % . Используемый в работе предел шкалы вольтметра U норм =30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность:

Ответ. ΔU = ±0,75 В .

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

  • Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.
  • Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.
  • Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α , то

Где Δn – предельная абсолютная погрешность; а δ n – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

  • Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.
  • Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

  • Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

  • Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: δ=δ 1 +δ 2 , или, точнее, δ=δ 1 +δ 2 +δ 1 δ 2 где δ – относительная погрешность произведения, δ 1 δ 2 - относительные погрешности сомножителей.

Примечания :

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

  • Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81: 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлениемчерез И ∞ . Искомая относительная погрешность

Заметим, что

тогда получим

Так как R И >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой , справедливой при λ≤1 для любого α . Предположив, что в этой формуле α = -1 и λ= rR (r+R) -1 R И -1 , получим δ ≈ rR/(r+R) R И .

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности К А = 1,5 с пределом измерения I k = 20 А; А 1 – амперметр типа М 366 класса точности К А1 = 1,0 с пределом измерения I к1 = 7,5 А. Найти наибольшую возможную относительную погрешность измерения тока I 2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I 1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I 2 по показаниям прибора (без учета их погрешностей): I 2 =I-I 1 =8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А 1

Для А имеем равенство для амперметра

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 10 3 – для одного прибора; 2·10 3 – для другого прибора. Какой из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 10 3) = 1000, для второго – 1/(2 . 10 3) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 10 3 / 1 . 10 3 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

При любых измерениях, округлении результатов расчетов, выполнении достаточно сложных подсчетов неизбежно возникает то или иное отклонение. Для оценки такой неточности принято использовать два показателя - это абсолютная и относительная погрешность.

Если от точного значения числа вычесть полученный результат, то мы получим абсолютное отклонение (причем при подсчете от отнимают меньшее). Например, если округлить 1370 до 1400, то абсолютная погрешность будет равна 1400-1382 = 18. При округлении до 1380, абсолютное отклонение составит 1382-1380 = 2. Формула абсолютной погрешности имеет вид:

Δx = |x* - x|, здесь

x* - истинное значение,

x - приближенная величина.

Впрочем, для характеристики точности одного этого показателя явно недостаточно. Судите сами, если погрешность веса составляет 0,2 грамма, то при взвешивании химреактивов для микросинтеза это будет очень много, при взвешивании 200 грамм колбасы вполне нормально, а при измерении веса железнодорожного вагона она и вовсе может быть не замечена. Поэтому часто вместе с абсолютной указывается или рассчитывается также относительная погрешность. Формула данного показателя выглядит так:

Рассмотрим пример. Пусть общее число учеников школы равно 196. Округлим эту величину до 200.

Абсолютное отклонение составит 200 - 196 = 4. Относительная погрешность составит 4/196 или округленно, 4/196 = 2%.

Таким образом, если известно истинное значение некой величины, то относительной погрешностью принятого приближенного значения является отношение абсолютного отклонения приближенной величины к точному значению. Однако в большинстве случает выявить истинное точное значение очень проблематично, а порой и вовсе невозможно. И, следовательно, нельзя рассчитать точное Тем не менее, всегда можно определить некоторое число, которое всегда будет немного больше, чем максимальная абсолютная или относительная погрешность.

Например, продавец взвешивает дыню на чашечных весах. При этом самая маленькая гиря равна 50 граммам. Весы показали 2000 грамм. Это приблизительное значение. Точный вес дыни неизвестен. Однако мы знаем, что не может быть больше 50 грамм. Тогда относительная веса не превосходит 50/2000 = 2,5%.

Значение, которое изначально больше абсолютной погрешности либо в наихудшем случае ей равное, принято называть предельной абсолютной погрешностью или же границей абсолютной погрешности. В предыдущем примере этот показатель равен 50 граммам. Аналогичным образом определяется и предельная относительная погрешность, которая в рассмотренном выше примере составила 2,5%.

Значение предельной погрешности не является строго заданным. Так, вместо 50 грамм мы вполне могли бы взять любое число, большее чем вес наименьшей гири, скажем 100 г или 150 г. Однако на практике выбирается минимальное значение. А если его удается точно определить, то оно и будет одновременно служить предельной погрешностью.

Бывает так, что абсолютная предельная погрешность не указана. Тогда следует считать, что она равна половине единицы последнего указанного разряда (если это число) или минимальной единице деления (если инструмент). К примеру, для миллиметровой линейки этот параметр равен 0,5 мм, а для приближенного числа 3,65 абсолютное предельное отклонение равно 0,005.

При измерении какой-нибудь величины неизменно есть некоторое отклонение от правдивого значения, от того что ни один прибор не может дать точного итога. Для того, дабы определить допустимые отклонения полученных данных от точного значения, применяют представления относительной и безусловной погрешности.

Вам понадобится

  • – итоги измерений;
  • – калькулятор.

Инструкция

1. В первую очередь, проведите несколько измерений прибором одной и той же величины, дабы иметь вероятность посчитать действительное значение. Чем огромнее будет проведено измерений, тем вернее будет итог. Скажем, взвесьте яблоко на электронных весах. Возможен, вы получили итоги 0,106, 0,111, 0,098 кг.

2. Сейчас посчитайте действительное значение величины (действительное, от того что правдивое обнаружить нереально). Для этого сложите полученные итоги и поделите их на число измерений, то есть обнаружьте среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

3. Для расчета безусловной погрешности первого измерения вычитайте из итога действительное значение: 0,106-0,105=0,001. Таким же образом вычислите безусловные погрешности остальных измерений. Обратите внимание, самостоятельно от того, получится итог с минусом либо с плюсом, знак погрешности неизменно позитивный (то есть вы берете модуль значения).

4. Дабы получить относительную погрешность первого измерения, поделите безусловную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обыкновенно относительная погрешность измеряется в процентах, следственно умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.

5. Если правдивое значение теснее вестимо, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического итогов измерений. Сразу вычитайте из правдивого значения полученный итог, при этом вы обнаружите безусловную погрешность.

6. После этого разделяете безусловную погрешность на правдивое значение и умножайте на 100% – это будет относительная погрешность. Скажем, число учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

Погрешность является величиной, которая определяет допустимые отклонения полученных данных от точного значения. Существуют представления относительной и безусловной погрешности. Их нахождение – одна из задач математического обзора. Впрочем на практике больше значимо бывает посчитать погрешность разброса какого-нибудь измеряемого показателя. Физические приборы имеют собственную возможную погрешность. Но не только ее надобно рассматривать при определении показателя. Для подсчета погрешности разброса σ нужно провести несколько измерений данной величины.

Вам понадобится

  • Прибор для измерения требуемой величины

Инструкция

1. Измерьте прибором либо другим средством измерения надобную вам величину. Повторите измерения несколько раз. Тем огромнее будет получено значений, тем выше точность определения погрешности разброса. Традиционно проводят 6-10 измерений. Запишите полученный комплект значений измеряемой величины.

2. Если все полученные значения равны, следственно, погрешность разброса равна нулю. Если же в ряду есть отличающиеся значения, вычислите погрешность разброса. Для ее определения существует особая формула.

3. Согласно формуле, вычислите вначале среднюю величину <х> из полученных значений. Для этого сложите все значения, а их сумму поделите на число проводимых измерений n.

4. Определите поочередно разность между всей полученной величиной и средним значением <х>. Запишите итоги полученных разностей. После этого возведите все разности в квадрат. Обнаружьте сумму данных квадратов. Сбережете конечный полученный итог суммы.

5. Вычислите выражение n(n-1), где n – число проводимых вами измерений. Поделите итог суммы из предыдущего вычисления на полученное значение.

6. Возьмите корень квадратный частного от деления. Это и будет погрешность разброса σ, измеренной вами величины.

Проводя измерения, невозможно гарантировать их точность, всякий прибор дает некую погрешность . Дабы узнать точность измерений либо класс точности прибора, нужно определить безусловную и относительную погрешность .

Вам понадобится

  • – несколько итогов измерений либо иная выборка;
  • – калькулятор.

Инструкция

1. Проведите измерения не менее 3-5 раз, дабы иметь вероятность посчитать действительное значение параметра. Сложите полученные итоги и поделите их на число измерений, вы получили действительное значение, которое применяется в задачах взамен правдивого (его определить нереально). Скажем, если измерения дали итог 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.

2. Обнаружьте безусловную погрешность всего измерения. Для этого из итога измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 безусловных погрешностей, по одному для всякого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули итогов).

3. Дабы узнать относительную погрешность всякого измерения, поделите безусловную погрешность на действительное (правдивое) значение. После этого умножьте полученный итог на 100%, традиционно именно в процентах измеряется эта величина. В примере обнаружьте относительную погрешность таким образом: ?1=0,4/8,4=0,048 (либо 4,8%), ?2=0,6/8,4=0,071 (либо 7,1 %), ?3=0,4/8,4=0,048 (либо 4,8%), ?4=1,4/8,4=0,167 (либо 16,7%), ?5=1,6/8,4=0,19 (либо 19%).

4. На практике для особенно точного отображения погрешности применяют среднее квадратическое отклонение. Дабы его обнаружить, возведите в квадрат все безусловные погрешности измерения и сложите между собой. После этого поделите это число на (N-1), где N – число измерений. Вычислив корень из полученного итога, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.

5. Дабы обнаружить предельную безусловную погрешность , обнаружьте минимальное число, заведомо превышающее безусловную погрешность либо равное ему. В рассмотренном примере примитивно выберите наибольшее значение – 1,6. Также изредка нужно обнаружить предельную относительную погрешность , в таком случае обнаружьте число, превышающее либо равное относительной погрешности, в примере она равна 19%.

Неотделимой частью всякого измерения является некоторая погрешность . Она представляет собой добротную отзыв точности проведенного изыскания. По форме представления она может быть безусловной и относительной.

Вам понадобится

  • – калькулятор.

Инструкция

1. Погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют идентично при многократном повторении измерений. Они непрерывны либо правомерно изменяются. Они могут быть вызваны неправильной установкой прибора либо несовершенством выбранного способа измерения.

2. Вторые появляются от могущества причин, и беспричинный нрав. К ним дозволено отнести неправильное округление при подсчете показаний и могущество окружающей среды. Если такие ошибки гораздо поменьше, чем деления шкалы этого прибора измерения, то в качестве безусловной погрешности уместно взять половину деления.

3. Промах либо дерзкая погрешность представляет собой итог слежения, тот, что круто отличается от всех остальных.

4. Безусловная погрешность приближенного числового значения – это разность между итогом, полученным в ходе измерения и правдивым значением измеряемой величины. Правдивое либо действительное значение особенно верно отражает исследуемую физическую величину. Эта погрешность является самой легкой количественной мерой ошибки. Её дозволено рассчитать по дальнейшей формуле: ?Х = Хисл – Хист. Она может принимать позитивное и негативное значение. Для большего понимания разглядим пример. В школе 1205 учащихся, при округлении до 1200 безусловная погрешность равняется: ? = 1200 – 1205 = 5.

5. Существуют определенные правила расчета погрешности величин. Во-первых, безусловная погрешность суммы 2-х само­стоятельных величин равна сумме их безусловных погрешностей: ?(Х+Y) = ?Х+?Y. Подобный подход применим для разности 2-х погрешностей. Дозволено воспользоваться формулой: ?(Х-Y) = ?Х+?Y.

6. Поправка представляет собой безусловную погрешность , взятую с обратным знаком: ?п = -?. Её применяют для исключения систематической погрешности.

Измерения физических величин неизменно сопровождаются той либо другой погрешностью . Она представляет собой отклонение итогов измерения от правдивого значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

1. Погрешности могут появиться в итоге могущества разных факторов. Среди них дозволено выделить несовершенство средств либо способов измерения, неточности при их изготовлении, неисполнение особых условий при проведении изыскания.

2. Существует несколько систематизаций погрешностей. По форме представления они могут быть безусловными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:?х = хисл- хист. Вторые определяются отношением безусловных погрешностей к величине правдивого значения показателя.Формула расчета имеет вид:? = ?х/хист. Измеряется в процентах либо долях.

3. Приведенная погрешность измерительного прибора находится как отношение?х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

4. По условиям происхождения различают основные и добавочные. Если измерения проводились в типичных условиях, то появляется 1-й вид. Отклонения, обусловленные выходом значений за пределы типичных, является дополнительной. Для ее оценки в документации обыкновенно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

5. Также погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые появляются от могущества причин, и беспричинный нрав. Промах представляет собой итог слежения, тот, что круто отличается от всех остальных.

6. В зависимости от нрава измеряемой величины могут применяться разные методы измерения погрешности. 1-й из них это способ Корнфельда. Он основан на исчислении доверительного промежутка в пределах от малейшего до максимального итога. Погрешность в этом случае будет представлять собой половину разности этих итогов: ?х = (хmax-xmin)/2. Еще один из методов – это расчет средней квадратической погрешности.

Измерения могут проводиться с различной степенью точности. При этом безусловно точными не бывают даже прецизионные приборы. Безусловная и относительная погрешности могут быть малы, но в действительности они есть фактически неизменно. Разница между приближенным и точным значениями некой величины именуется безусловной погрешностью . При этом отклонение может быть как в крупную, так и в меньшую сторону.

Вам понадобится

  • – данные измерений;
  • – калькулятор.

Инструкция

1. Перед тем как рассчитывать безусловную погрешность, примите за начальные данные несколько постулатов. Исключите дерзкие погрешности. Примите, что нужные поправки теснее вычислены и внесены в итог. Такой поправкой может быть, скажем, перенос начальной точки измерений.

2. Примите в качестве начального расположения то, что знамениты и учтены случайные погрешности. При этом подразумевается, что они поменьше систематических, то есть безусловной и относительной, характерных именно для этого прибора.

3. Случайные погрешности влияют на итог даже высокоточных измерений. Следственно всякий итог будет больше либо менее приближенным к безусловному, но неизменно будут расхождения. Определите данный промежуток. Его дозволено выразить формулой (Xизм- ?Х)?Хизм? (Хизм+?Х).

4. Определите величину, максимально приближенную к правдивому значению. В реальных измерениях берется среднее арифметическое, которое дозволено обнаружить по формуле, изображенной на рисунке. Примите итог за правдивую величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

5. Зная правдивую величину измерения, вы можете обнаружить безусловную погрешность, которую нужно рассматривать при всех последующих измерениях. Обнаружьте величину Х1 – данные определенного измерения. Определите разность?Х, отняв от большего числа меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание!
Как водится, на практике безусловно точное измерение провести не получается. Следственно за эталонную величину принимается предельная погрешность. Она представляет собой наивысшее значение модуля безусловной погрешности.

Полезный совет
В утилитарных измерениях за величину безусловной погрешности обыкновенно принимается половина наименьшей цены деления. При действиях с числами за безусловную погрешность принимается половина значения цифры, которая находится в дальнейшим за точными цифрами разряде. Для определения класса точности прибора больше главным бывает отношение безусловной погрешности к итогу измерений либо к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методологии. Точность зависит также от наблюдательности и состояния экспериментатора. Погрешности разделяются на безусловные, относительные и приведенные.

Инструкция

1. Пускай однократное измерение величины дало итог x. Правдивое значение обозначено за x0. Тогда безусловная погрешность ?x=|x-x0|. Она оценивает безусловную ошибку измерения. Безусловная погрешность складывается из 3 составляющих: случайных погрешностей, систематических погрешностей и промахов. Обыкновенно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

2. Правдивое значение измеряемой величины находится в интервале (x-?x ; x+?x). Короче это записывается как x0=x±?x. Главно измерять x и?x в одних и тех же единицах измерения и записывать в одном и том же формате числа, скажем, целая часть и три цифры позже запятой. Выходит, безусловная погрешность дает границы промежутка, в котором с некоторой вероятностью находится правдивое значение.

3. Относительная погрешность выражает отношение безусловной погрешности к действительному значению величины: ?(x)=?x/x0. Это безразмерная величина, она может записываться также в процентах.

4. Измерения бывают прямые и косвенные. В прямых измерениях сразу замеряется желанная величина соответствующим прибором. Скажем, длина тела измеряется линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

5. Если итог представляет собой связанность от 3 непринужденно измеряемых величин, имеющих погрешности?x1, ?x2, ?x3, то погрешность косвенного измерения?F=?[(?x1 ?F/?x1)?+(?x2 ?F/?x2)?+(?x3 ?F/?x3)?]. Тут?F/?x(i) – частные производные от функции по всякой из непринужденно измеряемых величин.

Полезный совет
Промахи – это дерзкие неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методологии эксперимента. Дабы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и детально расписывайте полученный итог.

Итог всякого измерения неминуемо сопровождается отклонением от правдивого значения. Вычислить погрешность измерения дозволено несколькими методами в зависимости от ее типа, скажем, статистическими способами определения доверительного промежутка, среднеквадратического отклонения и пр.

Инструкция

1. Существует несколько причин, по которым появляются погрешности измерений . Это приборная неточность, несовершенство методологии, а также ошибки, вызванные невнимательностью оператора, проводящего замеры. Помимо того, зачастую за правдивое значение параметра принимают его действительную величину, которая на самом деле является лишь особенно возможной, исходя из обзора статистической выборки итогов серии экспериментов.

2. Погрешность – это мера отклонения измеряемого параметра от его правдивого значения. Согласно способу Корнфельда, определяют доверительный промежуток, тот, что гарантирует определенную степень безопасности. При этом находят так называемые доверительные пределы, в которых колеблется величина, а погрешность вычисляют как полусумму этих значений:? = (xmax – xmin)/2.

3. Это интервальная оценка погрешности , которую имеет толк проводить при маленьком объеме статистической выборки. Точечная оценка заключается в вычислении математического ожидания и среднеквадратического отклонения.

4. Математическое ожидание представляет собой интегральную сумму ряда произведений 2-х параметров слежений. Это, собственно, значения измеряемой величины и ее вероятности в этих точках:М = ?xi pi.

5. Классическая формула для вычисления среднеквадратического отклонения полагает расчет среднего значения анализируемой последовательности значений измеряемой величины, а также рассматривает объем серии проведенных экспериментов:? = ?(?(xi – xср)?/(n – 1)).

6. По методу выражения выделяют также безусловную, относительную и приведенную погрешность. Безусловная погрешность выражается в тех же единицах, что и измеряемая величина, и равна разности между ее расчетным и правдивым значением:?x = x1 – x0.

7. Относительная погрешность измерения связана с безусловной, впрочем является больше высокоэффективной. Она не имеет размерности, изредка выражается в процентах. Ее величина равна отношению безусловной погрешности к правдивому либо расчетному значению измеряемого параметра:?x = ?x/x0 либо?x = ?x/x1.

8. Приведенная погрешность выражается отношением между безусловной погрешностью и некоторым условно принятым значением x, которое является постоянным для всех измерений и определяется по градуировке шкалы прибора. Если шкала начинается с нуля (односторонняя), то это нормирующее значение равно ее верхнему пределу, а если двусторонняя – ширине каждого ее диапазона:? = ?x/xn.

Самоконтроль при диабете считается значимым компонентом лечения. Для измерения сахара крови в домашних условиях применяется глюкометр. Возможная погрешность у этого прибора выше, чем у лабораторных анализаторов гликемии.


Измерение сахара крови нужно для оценки результативности лечения диабета и для коррекции дозы препаратов. От назначенной терапии зависит то, сколько раз в месяц понадобится мерить сахар. Изредка забор крови на обзор необходим неоднократно в течение дня, изредка довольно 1-2 раз в неделю. Самоконтроль исключительно нужен беременным и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предуготовлен только для ориентировочного определения концентрации сахара в крови. Возможная погрешность у глюкометра по мировым эталонам составляет 20% при гликемии больше 4,2 ммоль/л. Скажем, если при самоконтроле зафиксирован ярус сахара 5 ммоль/л, то настоящее значение концентрации находится в интервале от 4 до 6 ммоль/л. Возможная погрешность у глюкометра в стандартных условиях измеряется в процентах, а не в ммоль/л. Чем выше показатели, тем огромнее погрешность в безусловных числах. Скажем, если сахар крови достигает около 10 ммоль/л, то оплошность не превышает 2 ммоль/л, а если сахар – около 20 ммоль/л, то разница с итогом лабораторного измерения может быть до 4 ммоль/л. В большинстве случаев глюкометр завышает показатели гликемии.Эталоны допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что всякое двадцатое изыскание может значительно искажать итоги.

Допустимая погрешность у глюкометров различных фирм

Глюкометры подлежат непременной сертификации. В сопровождающих прибор документах обыкновенно указаны цифры возможной погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%. Некоторые изготовители глюкометров уделяют специальное внимание точности измерений. Существуют приборы европейских фирм, которые имеют возможную погрешность поменьше 20%. Лучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность изыскания влияют и некоторые другие факторы. Ненормально подготовленная кожа, слишком малый либо огромный объем полученной капли крови, недопустимый температурный режим – все это может приводить к ошибкам. Только в том случае, если все правила самоконтроля соблюдаются, дозволено рассчитывать на заявленную возможную погрешность изыскания. Правила самоконтроля с поддержкой глюкометра дозволено узнать у лечащего доктора.Точность глюкометра дозволено проверить в сервисном центре. Гарантийные обязательства изготовителей предусматривают бесплатные консультации и устранение неполадок.