Потенциальная энергия при гравитационном взаимодействии. Гравитационная потенциальная энергия Потенциальная энергия упругого и гравитационного взаимодействия

Обои

Если на систему действуют одни только консервативные силы, то можно для нее ввести понятие потенциальной энергии . Какое – либо произвольное положение системы, характеризующееся заданием координат ее материальных точек, условно примем за нулевое . Работа, совершаемая консервативными силами при переходе системы из рассматриваемого положения в нулевое, называется потенциальной энергией системы в первом положении

Работа консервативных сил не зависит от пути перехода, а потому потенциальная энергия системы при фиксированном нулевом положении зависит только от координат материальных точек системы в рассматриваемом положении. Иными словами, потенциальная энергия системы U является функцией только ее координат.

Потенциальная энергия системы определена не однозначно, а с точностью до произвольной постоянной. Этот произвол не может отразится на физических выводах, так как ход физических явлений может зависеть не от абсолютных значений самой потенциальной энергии, а лишь от ее разности в различных состояниях. Эти же разности от выбора произвольной постоянной не зависят.

Пусть система перешла из положения 1 в положение 2 по какому – либо пути 12 (рис. 3.3). Работу А 12 , совершенную консервативными силами при таком переходе, можно выразить через потенциальные энергии U 1 и U 2 в состояниях 1 и 2 . С этой целью вообразим, что переход осуществлен через положение О, т. е. по пути 1О2. Так как силы консервативны, то А 12 = А 1О2 = А 1О + А О2 = А 1О – А 2О. По определению потенциальной энергии U 1 = A 1 O , U 2 = A 2 O . Таким образом,

A 12 = U 1 – U 2 , (3.10)

т. е. работа консервативных сил равна убыли потенциальной энергии системы.

Та же работа А 12 , как было показано ранее в (3.7), может быть выражена через приращение кинетической энергии по формуле

А 12 = К 2 – К 1 .

Приравнивая их правые части, получим К 2 – К 1 = U 1 – U 2 , откуда

К 1 + U 1 = К 2 + U 2 .

Сумма кинетической и потенциальной энергий системы называется ее полной энергией Е . Таким образом, Е 1 = Е 2 , или

E º K + U = const. (3.11)

В системе с одним только консервативными силами полная энергия остается неизменной. Могут происходить лишь превращения потенциальной энергии в кинетическую и обратно, но полный запас энергии системы измениться не может. Это положение называется законом сохранения энергии в механике.

Вычислим потенциальную энергию в некоторых простейших случаях.

а) Потенциальная энергия тела в однородном поле тяжести. Если материальная точка, находящаяся на высоте h , упадет на нулевой уровень (т. е. уровень, для которого h = 0), то сила тяжести совершит работу A = mgh . Поэтому на высоте h материальная точка обладает потенциальной энергией U = mgh + C , где С – аддитивная постоянная. За нулевой можно принять произвольный уровень, например, уровень пола (если опыт производится в лаборатории), уровень моря и т. д. Постоянная С равна потенциальной энергии на нулевом уровне. Полагая ее равной нулю, получим


U = mgh . (3.12)

б) Потенциальная энергия растянутой пружины. Упругие силы, возникающие при растяжении или сжатии пружины, являются центральными силами. Поэтому они консервативны, и имеет смысл говорить о потенциальной энергии деформированной пружины. Ее называют упругой энергией . Обозначим через х растяжение пружины ,т. е. разность x = l l 0 длин пружины в деформированном и недеформированном состояниях. Упругая сила F зависит только от растяжения. Если растяжение x не очень велико, то она пропорциональна ему: F = – kx (закон Гука). При возвращении пружины из деформированного в недеформированное состояние сила F совершает работу

Если упругую энергию пружины в недеформированном состоянии условиться считать равной нулю, то

в) Потенциальная энергия гравитационного притяжения двух материальных точек. По закону всемирного тяготения Ньютона гравитационная сила притяжения двух точечных тел пропорциональна произведению их масс Mm и обратно пропорциональна квадрату расстояния между ними:

где G – гравитационная постоянная .

Сила гравитационного притяжения, как сила центральная, является консервативной. Для ее имеет смысл говорить о потенциальной энергии. При вычислении этой энергии одну из масс, например М , можно считать неподвижной, а другую – перемещающейся в ее гравитационном поле. При перемещении массы m из бесконечности гравитационные силы совершают работу

где r – расстояние между массами М и m в конечном состоянии.

Эта работа равна убыли потенциальной энергии:

Обычно потенциальную энергию в бесконечности U ¥ принимают равной нулю. При таком соглашении

Величина (3.15) отрицательна. Это имеет простое объяснение. Максимальной энергией притягивающиеся массы обладают при бесконечном расстоянии между ними. В этом положении потенциальная энергия считается равной нулю. Во всяком другом положении она меньше, т. е. отрицательна.

Допустим теперь, что в системе наряду с консервативными силами действуют также диссипативные силы. Работа всех сил А 12 при переходе системы из положения 1 в положение 2 по – прежднему равна приращению ее кинетической энергии К 2 – К 1 . Но в рассматриваемом случае эту работу можно представить в виде суммы работы консервативных сил и работы диссипативных сил . Первая работа может быть выражена через убыль потенциальной энергии системы: Поэтому

Приравнивая это выражение к приращению кинетической энергии, получим

где E = K + U – полная энергия системы. Таким образом, в рассматриваемом случае механическая энергия Е системы не остается постоянной, а уменьшается, так как работа диссипативных сил отрицательна.

Если в системе действуют только консервативные силы, то можно ввести понятие потенциальной энергии. Пусть тело массой m находит-


ся в гравитационном поле Земли, масса которой M . Сила взаимодей- ствия между ними определяется законом Всемирного тяготения

F (r ) = G Mm ,

где G = 6,6745 (8) × 10–11 м3/(кг× с2) - гравитационная постоянная; r - расстояние между их центрами масс. Подставляя выражение для гра- витационной силы в формулу (3.33), найдем ее работу при переходе тела из точки с радиус-вектором r 1 в точку с радиус-вектором r 2



r 2 dr



A 12 = òdA = òF (r )dr = -GMm òr

= GMm ⎜⎝r



1 r 1 r 1 2 2 1

Представим соотношение (3.34) в виде разности значений

A 12 = U (r 1) – U (r 2), (3.35)



U (r ) = -G Mm + C



для различных значений расстояний r 1 и r 2. В последней формуле C - произвольная константа.

Если тело приближается к Земле, которая считается неподвижной , то r 2 < r 1, 1/ r 2 – 1/ r 1 > 0 и A 12 > 0, U (r 1) > U (r 2). В этом случае сила тя- жести совершает положительную работу. Тело переходит из некото- рого начального состояния, которое характеризуется значением U (r 1) функции (3.36), в конечное, с меньшим значением U (r 2).

Если же тело удаляется от Земли, то r 2 > r 1, 1/ r 2 – 1/ r 1 < 0 и A 12 < 0,

U (r 1) < U (r 2), т. е сила тяготения совершает отрицательную работу.

Функция U = U (r ) является математическим выражением способ- ности гравитационных сил, действующих в системе, совершать ра- боту и согласно данному выше определению представляет собой по- тенциальную энергию.

Отметим, что потенциальная энергия обусловлена взаимным тя- готением тел и является характеристикой системы тел, а не одного тела. Однако при рассмотрении двух или большего числа тел одно из них (обычно Земля) считается неподвижным, а другие движутся от- носительно него. Поэтому часто говорят о потенциальной энергии именно этих тел в поле сил неподвижного тела.


Поскольку в задачах механики представляет интерес не величина потенциальной энергии, а ее изменение, то значение потенциальной энергии можно отсчитывать от любого начального уровня. Послед- нее определяет значение константы в формуле (3.36).

U (r ) = -G Mm .

Пусть нулевой уровень потенциальной энергии соответствует по- верхности Земли, т. е. U (R ) = 0, где R – радиус Земли. Запишем фор- мулу (3.36) для потенциальной энергии при нахождении тела на вы- соте h над ее поверхностью в следующей форме


U (R + h ) = -G Mm

R + h


+ C . (3.37)


Полагая в последней формуле h = 0, имеем

U (R ) = -G Mm + C .

Отсюда найдем значение константы C в формулах (3.36, 3.37)

C = -G Mm .

После подстановки значения константы C в формулу (3.37), имеем


U (R + h ) = -G Mm + G Mm = GMm ⎛- 1


1 ⎞= G Mm h .


R + h R


⎝⎜ R + h R ⎟⎠ R (R + h )


Перепишем эту формулу в виде

U (R + h ) = mgh h ,


где gh


R (R + h )


Ускорение свободного падения тела на высоте


h над поверхностью Земли.

В приближении h « R получаем известное выражение для потен- циальной энергии, если тело находится на небольшой высоте h над поверхностью Земли


Где g = G M


U (h ) = mgh , (3.38)

Ускорение свободного падения тела вблизи Земли.


В выражении (3.38) принята более удобная запись: U (R + h ) = U (h ). Из него видно, что потенциальная энергия равна работе, которую со- вершает гравитационная сила при перемещении тела с высоты h над


Землей на ее поверхность, соответствующую нулевому уровню по- тенциальной энергии. Последнее служит основанием считать выра- жение (3.38) потенциальной энергией тела над поверхностью Земли, говорить о потенциальной энергии тела и исключить из рассмотре- ния второе тело - Землю.

Пусть тело массой m находится на поверхности Земли. Для того чтобы оно оказалось на высоте h над этой поверхностью, к телу не- обходимо приложить внешнюю силу, противоположно направлен- ную силе тяжести и бесконечно мало отличающуюся от нее по мо- дулю. Работа, которую совершит внешняя сила, определяется сле- дующим соотношением:


R + h


R + h dr


⎡1 ⎤R + h

R

Гравитационная энергия

Гравитационная энергия - потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением .

Гравитационно-связанная система - система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя).

Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю . Полная энергия системы, равная сумме гравитационной и кинетической энергии , постоянна. Для изолированной системы гравитационная энергия является энергией связи . Системы с положительной полной энергией не могут быть стационарными.

В классической механике

Для двух тяготеющих точечных тел с массами M и m гравитационная энергия равна:

, - гравитационная постоянная ; - расстояние между центрами масс тел.

Этот результат получается из закона тяготения Ньютона , при условии, что для бесконечно удалённых тел гравитационная энергия равна 0. Выражение для гравитационной силы имеет вид

- сила гравитационного взаимодействия

С другой стороны согласно определению потенциальной энергии:

,

Константа в этом выражении может быть выбрана произвольно. Её обычно выбирают равной нулю, чтобы при r, стремящемуся к бесконечности, стремилось к нулю.

Этот же результат верен для малого тела, находящегося вблизи поверхности большого. В этом случае R можно считать равным , где - радиус тела массой M, а h - расстояние от центра тяжести тела массой m до поверхности тела массой M.

На поверхности тела M имеем:

,

Если размеры тела много больше размеров тела , то формулу гравитационной энергии можно переписать в следующем виде:

,

где величину называют ускорением свободного падения. При этом член не зависит от высоты поднятия тела над поверхностью и может быть исключён из выражения путём выбора соответствующей константы. Таким образом для малого тела, находящегося на поверхности большого тела справедлива следующая формула

В частности, эта формула применяется для вычисления потенциальной энергии тел, находящихся вблизи поверхности Земли.

В ОТО

В общей теории относительности наряду с классическим отрицательным компонентом гравитационной энергии связи появляется положительная компонента, обусловленная гравитационным излучением , то есть полная энергия гравитирующей системы убывает во времени за счёт такого излучения.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная энергия" в других словарях:

    Потенциальная энергия тел, обусловленная их гравитационным взаимодействием. Термин гравитационная энергия широко применяется в астрофизике. Гравитационная энергия какого либо массивного тела (звезды, облака межзвездного газа), состоящего из… … Большой Энциклопедический словарь

    Потенциальная энергия тел, обусловленная их гравитационным взаимодействием. Гравитационная энергия устойчивого космического объекта (звезды, облака межзвёздного газа, звёздного скопления) по абсолютной величине вдвое больше средней кинетической… … Энциклопедический словарь

    гравитационная энергия

    гравитационная энергия - gravitacinė energija statusas T sritis fizika atitikmenys: angl. gravitational energy vok. Gravitationsenergie, f rus. гравитационная энергия, f pranc. énergie de gravitation, f; énergie gravifique, f … Fizikos terminų žodynas

    Потенциальная энергия тел, обусловленная их гравитац. взаимодействием. Г. э. устойчивого космич. объекта (звезды, облака межзвёздного газа, звёздного скопления) по абс. величине вдвое больше ср. кинетич. энергии составляющих его частиц (тел; это… … Естествознание. Энциклопедический словарь

    - (для данного состояния системы) разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя: где … … Википедия

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    энергия тяготения - gravitacinė energija statusas T sritis Standartizacija ir metrologija apibrėžtis Gravitacinio lauko energijos ir jo veikiamų kitų objektų energijos kiekių suma. atitikmenys: angl. gravitational energy vok. Gravitationsenergie, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    - (греч. energeia, от energos действующий, сильный). Настойчивость, обнаруживаемая в преследовании цели, способность высшего напряжения сил, в соединении с крепкой волей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

    - (неустойчивость Джинса) нарастание со временем пространственных флуктуаций скорости и плотности вещества под действием сил тяготения (гравитационных возмущений). Гравитационная неустойчивость ведёт к образованию неоднородностей (сгустков) в … Википедия

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Кинетическая энергия

Рассмотрим случай, когда на тело массой m действует постоянная сила \(~\vec F\) (она может быть равнодействующей нескольких сил) и векторы силы \(~\vec F\) и перемещения \(~\vec s\) направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F s . Модуль силы по второму закону Ньютона равен F = m∙a , а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением \(~s = \frac{\upsilon^2_2 - \upsilon^2_1}{2a}\) .

Отсюда для работы получаем

\(~A = F \cdot s = m \cdot a \cdot \frac{\upsilon^2_2 - \upsilon^2_1}{2a} = \frac{m \cdot \upsilon^2_2}{2} - \frac{m \cdot \upsilon^2_1}{2}\) . (1)

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

\(~E_k = \frac{m \cdot \upsilon^2}{2}\) . (2)

Тогда равенство (1) можно записать в таком виде:

\(~A = E_{k2} - E_{k1}\) . (3)

Теорема о кинетической энергии

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

\(~A = E_{k2} - E_{k1}= \frac{m \cdot \upsilon^2}{2} - 0 = \frac{m \cdot \upsilon^2}{2}\) . (4)

Физический смысл кинетической энергии

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой m вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1). Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg .

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

\(~A = F \cdot s = m \cdot g \cdot (h_1 - h_2)\) . (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

\(~A = m \cdot g \cdot s \cdot \cos \alpha = m \cdot g \cdot h\) , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h ’, h ’’ и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

\(~A = m \cdot g \cdot h" + m \cdot g \cdot h"" + \ldots + m \cdot g \cdot h^n = m \cdot g \cdot (h" + h"" + \ldots + h^n) = m \cdot g \cdot (h_1 - h_2)\) , (7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С .

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

\(~A = - (m \cdot g \cdot h_2 - m \cdot g \cdot h_1)\) . (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой m из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

\(~A = - (E_{p2} - E_{p1})\) . (9)

Потенциальная энергия обозначается буквой Е p .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е p тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

\(~E_p = m \cdot g \cdot h\) . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h , где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

\(~E_p = -m \cdot g \cdot h\) .

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

\(~E_p = G \cdot \frac{M \cdot m}{r}\) . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

\(~E_e = G \cdot \frac{M_e \cdot m \cdot h}{R_e \cdot (R_e +h)}\) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

\(~E_p = m \cdot g \cdot h\) ,

где \(~g = G \cdot \frac{M_e}{R^2_e}\) – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т.к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

\(~A = F_{upr-cp} \cdot (x_1 - x_2)\) , (13)

где \(~F_{upr-cp} = k \cdot \frac{x_1 - x_2}{2}\) . Отсюда

\(~A = k \cdot \frac{x_1 - x_2}{2} \cdot (x_1 - x_2) = k \cdot \frac{x^2_1 - x^2_2}{2}\) или \(~A = -\left(\frac{k \cdot x^2_2}{2} - \frac{k \cdot x^2_1}{2} \right)\) . (14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

\(~E_p = \frac{k \cdot x^2}{2}\) . (15)

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

\(~E_p = A\) .

Физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано . Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

\(~A = E_{k2} - E_{k1}\) . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

\(~E_{k2} - E_{k1} = -(E_{p2} - E_{p1})\) или \(~E_{k1} + E_{p1} = E_{k2} + E_{p2}\) . (19)

Закон сохранения энергии в механических процессах :

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и си-лами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Приведем простейший опыт. Подбросим вверх стальной шарик. Сообщив начальную скорость υ нач, мы придадим ему кинетическую энергию, из-за чего он начнет подниматься вверх. Действие силы тяжести приводит к уменьшению скорости шарика, а значит, и его кинетической энергии. Но шарик поднимается выше и выше и приобретает все больше и больше потенциальной энергии (Е p = m∙g∙h ). Таким образом, кинетическая энергия не исчезает бесследно, а происходит ее превращение в потенциальную энергию.

В момент достижения верхней точки траектории (υ = 0) шарик полностью лишается кинетической энергии (Е k = 0), но при этом его потенциальная энергия становится максимальной. Дальше шарик меняет направление движения и с увеличивающейся скоростью движется вниз. Теперь происходит обратное превращение потенциальной энергии в кинетическую.

Закон сохранения энергии раскрывает физический смысл понятия работы :

работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, – уменьшению потенциальной энергии тел. Следовательно, работа равна энергии, превратившейся из одного вида в другой.

Закон об изменении механической энергии

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

\(~A_{vn} = \Delta E = E - E_0\) . (20)

где Е и Е 0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения F r тела составляет π радиан, работа силы трения отрицательна и равна

\(~A_{tr} = -F_{tr} \cdot s_{12}\) ,

где s 12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

Например, автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Кинетическая энергия поступательного движения автомобиля стала равной нулю, а потенциальная энергия не увеличилась. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. Следовательно, в результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения F tr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

\(~A_{tr} = F_{tr} \cdot s_{12}\) ,

Пример 1 . Пусть, внешняя сила F действует на брусок В , который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения F tr2 , действующей на тележку со стороны бруска, положительна:

Пример 2 . При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащихся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физматлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

«Физика - 10 класс»

В чём выражается гравитационное взаимодействие тел?
Как доказать наличие взаимодействия Земли и, например, учебника физики?

Как известно, сила тяжести - консервативная сила. Теперь найдём выражение для работы силы тяготения и докажем, что работа этой силы не зависит от формы траектории, т. е. что сила тяготения также консервативная сила.

Напомним, что работа консервативной силы по замкнутому контуру равна нулю.

Пусть тело массой m находится в поле тяготения Земли. Очевидно, что размеры этого тела малы по сравнению с размерами Земли, поэтому его можно считать материальной точкой. На тело действует сила тяготения

где G - гравитационная постоянная,
М - масса Земли,
r - расстояние, на котором находится тело от центра Земли.

Пусть тело перемещается из положения А в положение В по разным траекториям: 1) по прямой АВ; 2) по кривой АА"В"В; 3) по кривой АСВ (рис. 5.15)

1. Рассмотрим первый случай. Сила тяготения, действующая на тело, непрерывно уменьшается, поэтому рассмотрим работу этой силы на малом перемещении Δr i = r i + 1 - r i . Среднее значение силы тяготения равно:

где r 2 сpi = r i r i + 1 .

Чем меньше Δri, тем более справедливо написанное выражение r 2 сpi = r i r i + 1 .

Тогда работу силы F сpi , на малом перемещении Δr i , можно записать в виде

Суммарная работа силы тяготения при перемещении тела из точки А в точку В равна:


2. При движении тела по траектории АА"В"В (см. рис. 5.15) очевидно, что работа силы тяготения на участках АА" и В"В равна нулю, так как сила тяготения направлена к точке О и перпендикулярна любому малому перемещению по дуге окружности. Следовательно, работа будет также определяться выражением (5.31).

3. Определим работу силы тяготения при движении тела от точки А к точке В по траектории АСВ (см. рис. 5.15). Работа силы тяготения на малом перемещении Δs i равна ΔА i = F срi Δs i cosα i ,..

Из рисунка видно, что Δs i cosα i = - Δr i , и суммарная работа опять же будет определяться по формуле (5.31).

Итак, можно сделать вывод, что А 1 = А 2 = А 3 , т. е. что работа силы тяготения не зависит от формы траектории. Очевидно, что работа силы тяготения при перемещении тела по замкнутой траектории АА"В"ВА равна нулю.

Сила тяготения - консервативная сила.

Изменение потенциальной энергии равно работе силы тяготения, взятой с обратным знаком:

Если выбрать нулевой уровень потенциальной энергии на бесконечности, т. е. Е пВ = 0 при r В → ∞, то следовательно,

Потенциальная энергия тела массой m, находящегося на расстоянии r от центра Земли, равна:

Закон сохранения энергии для тела массой m, движущегося в поле тяготения, имеет вид

где υ 1 - скорость тела на расстоянии r 1 от центра Земли, υ 2 - скорость тела на расстоянии r 2 от центра Земли.

Определим какую минимальную скорость надо сообщить телу вблизи поверхности Земли, чтобы оно в отсутствие сопротивления воздуха могло удалиться от неё за пределы сил земного притяжения.

Минимальную скорость, при которой тело в отсутствие сопротивления воздуха может удалиться за пределы сил земного притяжения, называют второй космической скоростью для Земли .

На тело со стороны Земли действует сила тяготения, которая зависит от расстояния центра масс этого тела до центра масс Земли. Поскольку неконсервативных сил нет, полная механическая энергия тела сохраняется. Внутренняя потенциальная энергия тела остаётся постоянной, так как оно не деформируется. Согласно закону сохранения механической энергии

На поверхности Земли тело обладает и кинетической, и потенциальной энергией:

где υ II - вторая космическая скорость, М 3 и Я 3 - соответственно масса и радиус Земли.

В бесконечно удаленной точке, т. е. при r → ∞, потенциальная энергия тела равна нулю (W п = 0), а так как нас интересует минимальная скорость, то и кинетическая энергия также должна быть равна нулю: W к = 0.

Из закона сохранения энергии следует:

Эту скорость можно выразить через ускорение свободного падения вблизи поверхности Земли (при расчётах, как правило, этим выражением пользоваться удобнее). Поскольку то GM 3 = gR 2 3 .

Следовательно, искомая скорость

Точно такую же скорость приобрело бы тело, упавшее на Землю с бесконечно большой высоты, если бы не было сопротивления воздуха. Заметим, что вторая космическая скорость в раза больше, чем первая.