Равномерное движение по окружности определение. Что такое угловая скорость и как ее рассчитывают? Единицы измерения величины

Внутренняя

Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

\(~\upsilon = \frac{l}{\Delta t}.\)

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

\(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

\(~\varphi = \varphi_0 + \omega t.\)

Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

\(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

\(~T = \frac{\Delta t}{N},\)

где N - число оборотов, совершенных телом за время Δt .

За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

\(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

\(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

Следовательно,

\(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

Важным частным случаем движения частицы по заданной траектории является движение по окружности. Положение частицы на окружности (рис. 46) можно задавать, указывая не расстояние от некоторой начальной точки А, а угол образуемый радиусом, проведенным из центра О окружности к частице, с радиусом, проведенным в начальную точку А.

Наряду со скоростью движения по траектории, которая определяется как

удобно ввести угловую скорость, характеризующую быстроту изменения угла

Скорость движения по траектории называют также линейной скоростью. Установим связь между линейной и угловой скоростями. Длина дуги I, стягивающей угол равна где - радиус окружности, а угол измерен в радианах. Поэтому и угловая скорость со связана с линейной скоростью соотношением

Рис. 46. Угол задает положение точки на окружности

Ускорение при движении по окружности, как и при произвольном криволинейном движении, имеет в общем случае две составляющие: тангенциальную, направленную по касательной к окружности и характеризующую быстроту изменения величины скорости и нормальную, направленную к центру окружности и характеризующую быстроту изменения направления скорости.

Значение нормальной составляющей ускорения, называемой в этом случае (движение по окружности) центростремительным ускорением, дается общей формулой (3) § 8, в которой теперь линейную скорость можно выразить через угловую скорость с помощью формулы (3):

Здесь радиус окружности, разумеется, одинаков для всех точек траектории.

При равномерном движении по окружности, когда значение постоянно, угловая скорость со, как видно из (3), тоже постоянна. В этом случае ее иногда называют циклической частотой.

Период и частота. Для характеристики равномерного движения по окружности наряду с со удобно использовать период обращения Т, определяемый как время, в течение которого совершается один полный оборот, и частоту - величину, обратную периоду Т, которая равна числу оборотов за единицу времени:

Из определения (2) угловой скорости следует связь между величинами

Это соотношение позволяет записать формулу (4) для центростремительного ускорения еще и в таком виде:

Отметим, что угловая скорость со измеряется в радианах в секунду, а частота - в оборотах в секунду. Размерности со и одинаковы так как эти величины различаются лишь числовым множителем

Задача

По кольцевой дороге. Рельсы игрушечной железной дороги образуют кольцо радиуса (рис. 47). Вагончик перемещается по ним, подталкиваемый стержнем который поворачивается с постоянной угловой скоростью вокруг точки лежащей внутри кольца почти у самых рельсов. Как изменяется скорость вагончика при его движении?

Рис. 47. К нахождению угловой скорости при движении по кольцевой дороге

Решение. Угол образуемый стержнем с некоторым направлением, изменяется со временем по линейному закону: . В качестве направления, от которого отсчитывается угол удобно взять диаметр окружности, проходящий через точку (рис. 47). Точка О - центр окружности. Очевидно, что центральный угол определяющий положение вагончика на окружности, в два раза больше вписанного угла опирающегося на ту же дугу: Поэтому угловая скорость со вагончика при движении по рельсам вдвое больше угловой скорости с которой поворачивается стержень:

Таким образом, угловая скорость со вагончика оказалась постоянной. Значит, вагончик движется по рельсам равномерно. Его линейная скорость неизменна и равна

Ускорение вагончика при таком равномерном движении по окружности всегда направлено к центру О, а его модуль дается выражением (4):

Посмотрите на формулу (4). Как ее следует понимать: ускорение все-таки пропорционально или обратно пропорционально ?

Объясните, почему при неравномерном движении по окружности угловая скорость со сохраняет свой смысл, а теряют смысл?

Угловая скорость как вектор. В некоторых случаях угловую скорость удобно рассматривать как вектор, модуль которого равен а неизменное направление перпендикулярно плоскости, в которой лежит окружность. С помощью такого вектора можно записать формулу, аналогичную (3), которая выражает вектор скорости частицы, движущейся по окружности.

Рис. 48. Вектор угловой скорости

Поместим начало отсчета в центр О окружности. Тогда при движении частицы ее радиус-вектор будет только поворачиваться с угловой скоростью со, а его модуль все время равен радиусу окружности (рис. 48). Видно, что вектор скорости направленный по касательной к окружности, можно представить как векторное произведение вектора угловой скорости со на радиус-вектор частицы:

Векторное произведение. По определению векторное произведение двух векторов представляет собой вектор, перпендикулярный плоскости, в которой лежат перемножаемые векторы. Выбор направления векторного произведения производится по следующему правилу. Первый сомножитель мысленно поворачивается в сторону второго, как если бы это была рукоятка гаечного ключа. Векторное произведение направлено в ту же сторону, куда при этом стал бы перемещаться винт с правой резьбой.

Если сомножители в векторном произведении поменять местами, то оно изменит направление на противоположное: Это значит, что векторное произведение некоммутативно.

Из рис. 48 видно, что формула (8) будет давать правильное направление для вектора если вектор со направлен именно так, как показано на этом рисунке. Поэтому можно сформулировать следующее правило: направление вектора угловой скорости совпадает с направлением движения винта с правой резьбой, головка которого поворачивается в ту же сторону, в которую движется частица по окружности.

По определению модуль векторного произведения равен произведению модулей перемножаемых векторов на синус угла а между ними:

В формуле (8) перемножаемые векторы со и перпендикулярны друг другу, поэтому как и должно быть в соответствии с формулой (3).

Что можно сказать о векторном произведении двух параллельных векторов?

Как направлен вектор угловой скорости стрелки часов? Чем различаются эти векторы для минутной и часовоой стрелок?


Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Обычно, когда говорят о перемещении, мы представляем себе объект, который движется по прямой. Скорость такого движения принято называть линейной, и расчёт ее средней величины выполняется просто: достаточно найти отношение пройденного расстояния к времени, за которое оно было телом преодолено. Если же объект перемещается по окружности, то в этом случае уже определяется не линейная, а Что это за величина и как ее рассчитывают? Об этом как раз и пойдет разговор в данной статье.

Угловая скорость: понятие и формула

Когда движется по окружности, быстроту ее перемещения можно характеризовать величиной угла поворота радиуса, который соединяет движущийся объект с центром данной окружности. Понятно, что эта величина в зависимости от времени постоянно меняется. Быстрота, с которой этот процесс происходит, и есть не что иное, как угловая скорость. Другими словами, это отношение величины отклонения радиус-вектора объекта к промежутку времени, которое потребовалось объекту на совершение такого поворота. Формула угловой скорости (1) может быть записана в таком виде:

w = φ / t, где:

φ - угол поворота радиуса,

t - период времени вращения.

Единицы измерения величины

В международной системе общепринятых единиц (СИ) для характеристики поворотов принято использовать радианы. Поэтому 1 рад/с - основная единица, которая используется в расчетах угловой скорости. В то же время никто не запрещает применять градусы (напомним, что один радиан равен 180/пи, или 57˚18’). Также угловая скорость может выражаться в числе оборотов за минуту или за секунду. Если перемещение по окружности происходит равномерно, то данная величина может быть найдена по формуле (2):

где n - частота вращения.

В противном случае подобно тому, как это делают для обычной скорости, рассчитывают среднюю, или мгновенную угловую скорость. Следует отметить, что рассматриваемая величина является векторной. Для определения ее направления обычно используют которое часто применяется в физике. Вектор угловой скорости направлен в ту же сторону, в которую происходит винта с правой резьбой. Другими словами, он устремлен вдоль оси, вокруг которой вращается тело, в ту сторону, откуда вращение видно происходящим против движения часовой стрелки.

Примеры расчета

Предположим, требуется определить, чему равна линейная и угловая скорость колеса, если известно, что его диаметр равен одному метру, а угол вращения изменяется в соответствии с законом φ=7t. Воспользуемся нашей первой формулой:

w = φ / t = 7t / t = 7 с -1 .

Это и будет искомая угловая скорость. Теперь перейдем к поиску привычной нам быстроты перемещения. Как известно, v = s / t. Учитывая, что s в нашем случае - это колеса (l =2π*r), а 2π - один полный оборот, получается следующее:

v = 2π*r / t = w * r = 7 * 0.5 = 3.5 м/с

Вот еще одна задачка на эту тему. Известно, что на экваторе равен 6370 километров. Требуется определить линейную и угловую быстроту движения точек, находящихся на этой параллели, которое возникает в результате вращения нашей планеты вокруг своей оси. В данном случае нам понадобится вторая формула:

w = 2π*n = 2*3,14 *(1/(24*3600)) = 7,268 *10 -5 рад/с.

Осталось выяснить, чему равна линейная скорость: v = w*r = 7,268 *10 -5 *6370 * 1000 = 463 м/с.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.