Влияние органических удобрений на почву. Влияние минеральных удобрений на растения. Нормы применения удобрений

Штукатурка

Внесение минеральных удобрений оказывает значительное влияние на популяции вредных организмов, которые в неподвижном (пропагулы фитопатогенов, семена сорняков) или малоподвижном (нематоды, личинки фитофагов) состоянии длительное время выживают, сохраняются или обитают в почве. Особенно широко в почвах представлены возбудители обыкновенных корневых гнилей (В. sorokiniana, виды p. Fusarium ). Название вызываемых ими заболеваний - "обыкновенные" гнили - подчеркивает широту ареалов на сотнях растений-хозяев. Кроме того, они относятся к разным экологическим группам почвенных фитопатогенов: В. sorokiniana - к временным обитателям почвы, а виды рода Fusarium - к постоянным. Это делает их удобными объектами для выяснения закономерностей, характерных для группы почвенных, или корневых, инфекций в целом.
Под влиянием минеральных удобрений агрохимические свойства пахотных почв существенно меняются по сравнению с их аналогами на целинных и залежных участках. Это оказывает большое влияние на выживаемость, жизнеспособность, а следовательно, и численность фитопатогенов в почве. Покажем это на примере В. sorokiniana (табл. 39).


Приведенные данные свидетельствуют, что воздействие агрохимических свойств почвы на плотность популяции В. sorokiniana является более значительным в агроэкосистемах зерновых культур, чем в естественных экосистемах (целинные почвы): индекс детерминации, свидетельствующий о доле влияния рассматриваемых факторов, составляет соответственно 58 и 38 %. Чрезвычайно важно, что самыми значимыми экологическими факторами, изменяющими плотность популяции возбудителя в почве, являются в агроэкосистемах - азот (NO3) и калий (K2O), а в естественных экосистемах - гумус. В агроэкосистемах возростает зависимость плотности популяции гриба от pH почвы, а также содержания подвижных форм фосфора (P2O5).
Рассмотрим более подробно влияние отдельных видов минеральных удобрений на жизненный цикл почвенных вредных организмов.
Азотные удобрения.
Азот относится к основным элементам, необходимым для жизнедеятельности как растений-хозяев, так и вредных организмов. Он входит в состав четырех элементов (Н, О, N, С), из которых на 99 % состоят ткани всех живых организмов. Азот как седьмой элемент таблицы Менделеева, имеющий во втором ряду 5 электронов, может достраивать их до 8 или терять, замещаясь кислородом. Благодаря этому образуются устойчивые связи с другими макро- и микроэлементами.
Азот является составной частью белков, из которых создаются все их основные структуры и которые обусловливают активность генов, включая систему растения-хозяева - вредные организмы. Азот входит в состав нуклеиновых кислот (рибонуклеиновой РНК и дезоксирибонуклеиновой ДНК), обусловливающих хранение и передачу наследственной информации об эволюционно-экологических взаимоотношениях вообще и между растениями и вредными организмами в экосистемах, в частности. Поэтому внесение азотных удобрений служит мощным фактором как стабилизации фитосанитарного состояния агроэкосистем, так и его дестабилизации. Это положение получило подтверждение при массовой химизации сельского хозяйства.
Растения, обеспеченные азотным питанием, отличаются лучшим развитием надземной массы, кустистостью, площадью листовой по-верности, содержанием хлорофилла в листьях, белковостью зерна и содержанием в нем клейковины.
Главными источниками питания азотом как растений так и вредных организмов являются соли азотной кислоты и соли аммония.
Под влиянием азота изменяется главная жизненная функция вредных организмов - интенсивность размножения, а следовательно и роль возделываемых растений в агроэкосистемах как источников воспроизводства вредных организмов. Возбудители корневых гнилей временно увеличивают свою популяцию в отсутствии растений-хозяев, используя минеральный азот, вносимый в виде удобрений, для непосредственного потребления (рис. 18).


В отличие от минерального азота, действие органики на возбудителей болезней происходит через микробное разложение органического вещества. Поэтому увеличение органического азота в почве коррелирует с ростом популяции почвенной микрофлоры, среди которой существенную долю составляют антагонисты. Обнаружена высокая зависимость численности популяции гельминтоспориозной гнили в агроэкосистемах от содержания минерального азота, а в естественных, где преобладает органический азот - от содержания гумуса. Тем самым условия азотного питания растений-хозяев и возбудителей корневых гнилей в агро- и естественных экосистемах различаются: они более благоприятны в агроэкосистемах при обилии азота в минеральной форме, и менее - в естественных экосистемах, где минеральный азот присутствует в меньшем количестве. Связь численности популяции В. sorokiniana с азотом в естественных экосистемах тоже проявляется, но количественно менее выражена: доля влияния на популяцию составляет в почвах естественных экосистем Западной Сибири 45 % против 90 % в агроэкосистемах. Наоборот, доля влияния органического азота более весома в естественных экосистемах - соответственно 70 % против 20 %. Внесение азотных удобрений на черноземах значительнее стимулирует размножение В. sorokiniana в сравнении с фосфорным, фосфорно-калийным и полным удобрениями (см. рис. 18). Однако эффект стимуляции резко различается в зависимости от форм азотных удобрений, усваиваемых растениями: он был максимальным при внесении нитрата магния, натриевой селитры и минимальным - при использовании сульфата аммония.
По данным И. И. Черняевой, Г. С. Муромцева, Л. Н. Коробовой, В. А. Чулкиной и др., сульфат аммония на нейтральных и слабощелочных почвах достаточно эффективно подавляет прорастание пропагул фитопатогенов и снижает плотность популяций таких широко распространенных фитопатогенов как виды родов Fusarium, Helminthosporium, Ophiobolus и утрачивает это качество при совместном внесении с известью. Механизм подавления объясняется поглощением иона аммония корнями растений и выделением в ризосферу корней иона водорода. В результате этого в ризосфере растений повышается кислотность почвенного раствора. Прорастание спор фитопатогенов подавляется. Кроме того, аммоний - как менее подвижный элемент - обладает пролонгированным действием. Он поглощается почвенными коллоидами и постепенно высвобождается в почвенный раствор.
Аммонификация осуществляется аэробными и анаэробными микроорганизмами (бактериями, актиномицетами, грибами) , среди которых выявлены активные антагонисты возбудителей корневых гнилей. Корреляционный анализ показывает, что между численностью В. sorokiniana в почвах и численностью аммонификаторов на черноземных почвах Западной Сибири существует обратная тесная зависимость: r = -0,839/-0,936.
Содержание азота в почве оказывает влияние на выживаемость фитопатогенов на(в) инфицированных растительных остатках. Так, выживаемость Ophiobolus graminis и Fusarium roseum была выше на соломе в почвах, богатых азотом, в то время как для В. sorokiniana , наоборот, - в почвах с низким его содержанием. При усилении минерализации растительных остатков под влиянием азотно-фосфорных удобрений происходит активное вытеснение В. sorokiniana: популяция возбудителя гнили на растительных остатках при внесение NP в 12 раз меньше, чем на растительных остатках без внесения удобрений.
Внесение азотных удобрений усиливает рост вегетативных органов растений, накопление в них небелкового азота (аминокислот), доступного для патогенов; растет обводненность тканей, уменьшается толщина кутикулы, клетки увеличиваются в объеме, оболочка их становится тоньше. Это облегчает проникновение возбудителей в ткани растений-хозяев, усиливает их восприимчивость к болезням. Чрезмерно высокие нормы внесений азотных удобрений вызывают дисбаланс в питании растений азотом и повышенное развитие болезней.
Е. П. Дурынина и Л. Л. Великанов отмечают, что высокая степень поражения растений при внесении азотных удобрений связана со значительным накоплением небелкового азота. Другие авторы связывают это явление с изменением количественного соотношения аминокислот при патогенезе болезней. Более сильное поражение ячменя В. sorokiniana отмечено в случае высокого содержания глутамина, треонина, валина и фенилаланина. Напротив, при высоком содержании аспарагина, пролина и аланина поражение было незначительным. Содержание серина и изолейцина повышается в растениях, выросших на нитратной форме азота, а глицина и цистеина - на аммонийной.
Установлено, что вертициллезная инфекция усиливается, когда в корневой зоне преобладает нитратный азот и, наоборот, ослабляется при замене его на аммонийную форму. Внесение под хлопчатник высоких доз азота (более 200 кг/га) в виде аммиачной воды, сжиженного аммиака, сульфата аммония, аммофоса, мочевины, цианамида кальция приводит к более значительному повышению урожая и существенному подавлению вертициллезной инфекции, чем при внесении аммиачной и чилийской селитры. Различия в действии нитратных и аммонийных форм азотных удобрений вызваны их различным влиянием на биологическую активность почвы. Соотношение С: N и отрицательное действие нитратов ослабевают на фоне внесения органических добавок.
Внесение азотных удобрений в аммонийный форме снижает процесс размножения овсяной цистообразующей нематоды и повышает физиологическую устойчивость к ней растений. Так, внесение сульфата аммония снижает численность нематоды на 78 %, а урожайность зерна увеличивается на 35,6 %. В то же время применение нитратных форм азотных удобрений, наоборот, способствует увеличению популяции овсяной нематоды в почве.
Азот лежит в основе всех ростовых процессов в растении. В связи с этим поражаемость растений болезнями и вредителями слабее при оптимальном питании растений. При повышении развития болезней на азотном фоне питания катастрофического снижения урожайности не происходит. Ho сохранность продукции при хранении значительно снижается. Благодаря интенсивности ростовых процессов соотношение между пораженной и здоровой тканью органов при внесении азотных удобрений изменяется в сторону здоровой. Так, при поражении зерновых культур корневыми гнилями на азотном фоне питания одновременно происходит рост вторичной корневой системы, в то время как при дефиците азота рост вторичных корней подавляется.
Таким образом, потребности растений и вредных организмов в азоте как элементе питания совпадают. Это приводит как к росту урожайности при внесении азотных удобрений, так и к размножению вредных организмов. Более того, в агроэкосистемах преобладают минеральные формы азота, особенно нитратная, которые непосредственно потребляются вредными организмами. В отличие от агроэкосистем, в естественных экосистемах преобладает органическая форма азота, потребляемая вредными организмами только при разложении органических остатков микрофлорой. Среди неё много антагонистов, подавляющих всех возбудителей корневых гнилей, но особенно специализированных, как В. sorokiniana. Это ограничивает размножение возбудителей корневых гнилей в естественных экосистемах, где их численность постоянно поддерживается на уровне ниже ПВ.
Дробные внесения азотных удобрений в сочетании с фосфорными, замена нитратной формы на аммонийную, стимулируют общую биологическую и антагонистическую активность почв, служат реальными предпосылками стабилизации и снижения численности вредных организмов в агроэкосистемах. К этому добавляется положительное действие азотных удобрений на повышение выносливости (адаптивности) к вредным организмам - энергично растущие растения обладают повышенными компенсаторными способностями в ответ на поражение и повреждения, наносимые им возбудителями болезней и вредителями.
Фосфорные удобрения.
Фосфор входит в состав нуклеиновых кислот, макроэргических соединений (АТФ), участвуя в синтезе белков, жиров, углеводов, аминокислот. Он принимает участие в фотосинтезе, дыхании, регуляции проницаемости мембран клеток, в образовании и переносе энергии, необходимой для жизнедеятельности растений и животных. Основная роль в энергетических процессах клеток, тканей и органов живых организмов принадлежит АТФ (аденозинтрифосфорной кислоте). Без АТФ не могут проходить ни процессы биосинтеза, ни распада метаболитов в клетках. Роль фосфора в биологическом переносе энергии уникальна: устойчивость АТФ в средах, где идет биосинтез, больше устойчивости других соединений. Это связано с тем, что богатая энергией связь защищена отрицательным зарядом фосфорила, отталкивающим молекулы воды и ионы ОН-. В противном случае АТФ легко подвергалась бы гидролизу и распаду.
При обеспечении растений фосфорным питанием в них усиливаются процессы синтеза, активизируется рост корней, ускоряется созревание сельскохозяйственных культур, возрастает засухоустойчивость, улучшается развитие генеративных органов.
Главным источником фосфора для растений в агроэкосистемах являются фосфорные удобрения. Растения поглощают фосфор в начальные фазы роста и очень чувствительны к его недостатку в этот период.
Внесение фосфорных удобрений оказывает значительное влияние на развитие корневых гнилей. Этот эффект достигается даже при внесении удобрений в небольших дозах, в рядки при посеве. Положительное действие фосфорных удобрений объясняется тем, что фосфор способствует усиленному росту корневой системы, утолщению механических тканей, а главное, определяет поглотительную (мета-болитическую) активность корневой системы.
Корневая система пространственно и функционально обеспечивает поглощение, транспорт и метаболизм фосфора. Причем значение корневой системы для поглощения фосфора неизмеримо выше, чем азота. В отличие от нитратов, анионы фосфора поглощаются почвой и остаются в нерастворенной форме. Растение может получить их только благодаря корням, непосредственно вступающим в контакт с анионами в толще почвы. Благодаря правильному фосфорному питанию снижается предрасположенность к возбудителям болезней со стороны корневой системы, особенно вторичной. Последнее совпадает с повышенной физиологической активностью вторичных корней в снабжении растения фосфором. Каждая единица объема вторичных корней получала (в опыте с мечеными атомами) в два раза больше фосфора в сравнении с зародышевыми корнями.
Внесение фосфорного удобрения замедляло развития обыкновенной корневой гнили во всех изученных зонах Сибири даже тогда, когда в “первом минимуме” в почве находится азот (северная лесостепь). Положительное действие фосфора сказывалось и при основном и при рядковом внесении в небольшой (Р15) дозе. Рядковое удобрение более целесообразно при ограниченном количестве удобрений.
Эффективность фосфорных удобрений для вегетативных органов растений различается: оздоровление подземных, особенно вторичных корней проявлялось во всех зонах, а надземных - только в увлажненных и умеренно увлажненных (подтайга, северная лесостепь). В пределах одной зоны эффект оздоровления от фосфорного удобрения на подземных органах был в 1,5-2,0 раза выше, чем на надземных. На почвозащитных фонах обработки в степной зоне особенно эффективны в оздоровлении почвы и вегетативных органов растений яровой пшеницы азотно-фосфорные удобрения в расчетной норме. Усиление ростовых процессов под влиянием минеральных удобрений приводило к повышению выносливости растений к обыкновенной корневой гнили. При этом ведущая роль принадлежала тому макроэлементу, содержание которого в почве минимально: в горно-степной зоне - фосфору, в северной лесостепи - азоту. В горно-степной зоне, например, выявлена корреляция между уровнем развития корневых гнилей (%) по годам и величиной урожайности зерна (ц/га):


Корреляция имеет обратный характер: чем слабее развитие корневых гнилей, тем выше урожайность зерна, и наоборот.
Аналогичные результаты получены в южной лесостепи Западной Сибири, где обеспеченность почвы подвижными формами P2O5 была средней. Недобор зерна от обыкновенной корневой гнили самым высоким оказался в аарианте без применения удобрений. Так, в среднем за 3 года он составил по ячменю сорта Омский 13709 32,9 % против 15,6-17,6 в случае внесения фосфорного, фосфорно-азотного и полного минерального удобрений, или почти в 2 раза выше. Внесение азотного удобрения, даже если азот находился в почве в “первом минимуме”, сказывалось главным образом на повышении выносливости растений к болезни. В результате этого, в отличие от фосфорного фона, корреляция между развитием болезни и урожайностью зерна по азоту статистически не доказана.
Многолетние исследования, проведенные на Ротамстедской опытной станции (Англия), свидетельствуют о том, что биологическая эффективность фосфорных удобрений против корневых гнилей (возбудитель Ophiobolus graminis ) зависит от плодородия почв и предшественников, изменяясь от 58 % до 6-и кратного положительного эффекта. Максимальная эффективность достигалась при комплексном применении фосфорных удобрений с азотными.
По данным исследований, проведенных на каштановых почвах Республики Алтай, существенное снижение популяции В. sorokiniana в почве достигается там, где фосфор содержится в почве а первом минимуме (см. рис. 18). Добавление а этих условиях азотных удобрений в норме N45 и даже калийных в норме К45 фитосанитарное состояние почв практически не улучшает. Биологическая эффективность фосфорного удобрения в дозе Р45 составила 35,5 %, а полного удобрения - 41,4% по сравнению с фоном, без применения удобрений. При этом существенно возрастает количество конидий с признаками деградации (разложения).
Повышение устойчивости растений под влиянием фосфорного удобрения ограничивает вредоносность проволочников, нематод, сокращая критический период в результате интенсификации ростовых процессов на начальных фазах.
Внесение фосфорно-калийных удобрений оказывает прямое токсическое действие на фитофагов. Так, при внесении фосфорно-калийных удобрений снижается численность проволочников в 4-5 раз, а при добавлении к ним азотных удобрений - в 6-7 раз по сравнению с их исходной численностью, и в 3-5 раз по сравнению с контрольными данными без применения удобрений. Особенно резко снижается популяция посевного щелкуна. Действие минеральных удобрений на снижение численности проволочников объясняется тем, что покровы вредителей обладают избирательной проницаемостью к солям, содержащимся в минеральных удобрениях. Быстрее других проникают и наиболее токсичны для проволочников катионы аммония (NH4+), затем катионы калия и натрия. Наименее токсичны катионы кальция. Анионы солей удобрений можно расположить в следующем убывающем порядке по их токсическому действию на проволочников: Cl-, N-NO3-, PO4-.
Токсическое действие минеральных удобрений на проволочников изменяется в зависимости от гумусности почв, их механического состава и величины pH. Чем меньше органического вещества содержится в почве, ниже pH и легче механический состав почвы, тем выше токсическое действие минеральных, в том числе фосфорных удобрений на насекомых.
Калийные удобрения.
Находясь в клеточном соке, калий сохраняет легкую подвижность, удерживаясь митохондриями в протоплазме растений днем и частично выделяется через корневую систему ночью, а днем вновь поглощается. Дожди вымывают калий, особенно из старых листьев.
Калий способствует нормальному течению фотосинтеза, усиливает отток углеводов из пластинок листьев в другие органы, синтез и накопление витаминов (тиамина, рибофлавина и др.). Под влиянием калия растения приобретают способность удерживать воду и легче переносить кратковременную засуху. У растений утолщается клеточная оболочка, повышается прочность механических тканей. Эти процессы способствуют повышению физиологической устойчивости растений к вредным организмам и неблагоприятным абиотическим факторам внешней среды.
По данным Международного института калийных удобрений (750 полевых экспериментов) калий снижал поражаемость растений грибными болезнями в 526 случаях (71,1 %), был неэффективным в 80 (10,8%) и увеличивал поражаемость в 134 (18,1 %) случаях. Он особенно эффективен в оздоровлении растений в увлажненных прохладных условиях даже при высоком содержании его в почве. В пределах Западно-Сибирской низменности калий стабильно производил положительный эффект оздоровления почв в зонах подтайги (табл. 40).

Внесение калийных удобрений даже при высоком содержании калия в почвах всех трех зон существенно снижало заселенность почв В. sorokiniana. Биологическая эффективность калия составляла 30-58 % против 29-47 % фосфорного и при неустойчивой эффективности азотного удобрения: в подтайге и северной лесостепи положительна (18-21 %), в горно-степной зоне - отрицательна (- 64 %).
Общая микробиологическая активность почвы и концентрация в ней K2O оказывают решающее воздействие на выживаемость Rhizoctonia solani. Калий способен повышать приток углеводов в корневую систему растений. Поэтому наиболее активно формирование микоризы пшеницы идет при внесении калийных удобрений. Микоризообразование снижается при внесении азота из-за расхода углеводов на синтез азотсодержащих органических соединений. Влияние фосфорного удобрения было в этом случае несущественным.
Кроме влияния на интенсивность размножения возбудителей и выживаемость их в почве, минеральные удобрения воздействуют на физиологическую устойчивость растений к инфекции. При этом калийные удобрения усиливают в растениях процессы, задерживающие распад органических веществ, повышают активность каталазы и пероксидазы, снижают интенсивность дыхания и потери сухих веществ.
Микроэлементы.
Микроэлементы составляют обширную группу катионов и анионов, которые оказывают многогранное воздействие на интенсивность и характер спороношения возбудителей болезней, а также устойчивость к ним растений-хозяев. Важнейшей особенностью действия микроэлементов является их относительно малые дозы, необходимые для ослабления вредоносности многих заболеваний.
С целью снижения вредоносности болезней рекомендуется применять следующие микроэлементы:
- гельминтоспориоз зерновых культур - марганец;
- вертициллез хлопчатника - бор, медь;
- корневая гниль хлопчатника - марганец;
- фузариозное увядание хлопчатника - цинк;
- корнеед свеклы - железо, цинк;
- ризоктониоз картофеля - медь, марганец,
- рак картофеля - медь, бор, молибден, марганец;
- черная ножка картофеля - медь, марганец;
- вертициллез картофеля - кадмий, кобальт;
- черная ножка и кила капусты - марганец, бор;
- фомоз моркови - бор;
- черный рак яблони - бор, марганец, магний;
- серая гниль клубники - марганец.
Механизм действия микроэлементов на разных возбудителей болезней различен.
В ходе патогенеза корневых гнилей на ячмене, например, нарушаются физиолого-биохимические процессы и разбалансируется элементный состав растений. В фазе кущения снижается содержание К, Cl, Р, Mn, Cu, Zn и растет концентрация Fe, Si, Mg и Ca. Подкормка растений микроэлементами, в которых растение испытывает дефицит, стабилизирует метаболитические процессы в растениях. Тем самым возрастает их физиологическая устойчивость к возбудителям.
Различные возбудители нуждаются в различных микроэлементах. На примере возбудителя техасской корневой гнили (возбудитель Phymatotrichum omnivorum ) показано, что только Zn, Mg, Fe увеличивают биомассу мицелия возбудителя, в то время Ca, Co, Cu, Al угнетают этот процесс. Поглощение Zn начинается со стадии прорастания конидий. У Fusarium graminearum Zn влияет на образование желтых пигментов. Большинство грибов требуют наличия в субстрате Fe, В, Mn, Zn, хотя и в разных концентрациях.
Бор (В), воздействуя на проницаемость клеточных мембран растений и транспорт углеводов, изменяет их физиологическую устойчивость к фитопатогенам.
Выбор оптимальных доз микроудобрений, например, при внесении Mn и Co на хлопчатнике, снижает развитие вилта на 10-40 %. Применение микроэлементов является одним из эффективных способов оздоровления картофеля от парши обыкновенной. По данным известного немецкого фитопатолога Г. Бразда (G. Brazda), марганец снижает развитие парши обыкновенной на 70-80 %. Условия, способствующие поражению клубней картофеля паршой, совпадают с факторами марганцевого голодания. Есть прямая зависимость между развитием парши обыкновенной и содержанием марганца в кожуре клубней картофеля. При недостатке марганца кожура становится шершавой и трескается (см. рис. 4). Возникают благоприятные условия для заражения клубней. По данным ВНИИ льна, при недостатке бора в почве у льна нарушается транспорт углеводов, способствующий нормальному развитию ризосферных и почвенных микроорганизмов. Внесение бора в почву уменьшает агрессивность возбудителя фузариоза льна в два раза при росте урожайности семян на 30 %.
Влияние микроудобрений на развитие фитофагов и других почвенных вредных организмов изучено недостаточно. Они в большей степени применяются для оздоровления посевов от наземно-воздушных, или листо-стеблевых, вредных организмов.
Микроэлементы применяются при обработке посевного и посадочного материала. Они вносятся в почву вместе с NPK, либо при опрыскивании растений или при поливе. Во всех случаях эффективность микроудобрений в защите растений от почвенных вредных организмов, особенно фитопатогенов, возрастает при внести их на фоне полного минерального удобрения.
Полное минеральное удобрение.
Внесение полного минерального удобрения на основе агрохимических картограмм и нормативного метода оказывает наиболее благоприятное влияние на фитосанитарное состояние почв и посевов в отношении почвенных, или корне клубневых, инфекций, оздоравливая почву и корнеклубнеплоды, которые используются на продовольствие и на семена.
Оздоровление почв с помощью полного минерального удобрения под яровую пшеницу и ячмень происходит практически во всех почвенно-климатических зонах (табл. 41).

Биологическая эффективность полного минерального удобрения изменялась по зонам от 14 до 62 %: более высокой она была в относительно увлажненных зонах, чем в засушливой (Кулундинская степь), а в пределах зоны - в бессменных посевах, где отмечалась худшая фитосанитарная ситуация.
Роль минеральных удобрений в оздоровлении почв снижается, когда высеваются семена, зараженные фитопатогенами. Зараженные семена создают микроочаги возбудителя инфекции в почвы и вдобавок возбудитель, находившийся на(в) семенах, первым занимает экологическую нишу на пораженных органах растений.
Все минеральные удобрения, снижающие pH на дерново-подзолистой почве, негативно влияют на выживаемость пропагул В. sorokiniana в почве (r = -0,737). Так, калийные удобрения, подкисляя почву, снижают численность популяции фитопатогена, особенно в недостаточно влажной почве.
Повышение физиологической устойчивости растений к болезням приводит к оздоровлению подземных и надземных вегетативных органов. Еще Д. Н. Прянишников отмечал, что у голодающих растений пропорциональное развитие вегетативных органов нарушается. В зонах достаточного (тайга, подтайга, предгорья) и умеренного (лесостепь) увлажнения в Западной Сибири под влиянием полного минерального удобрения существенно возрастает оздоровление как подземных (первичные, вторичные корни, эпикотиль), так и надземных (прикорневые листья, основание стебля) вегетативных органов. В то же время в засушливых условиях (Кулундинская степь) увеличивается количество здоровых корней, особенно вторичных. Оздоровление вегетативных органов растений на удобренном фоне связано преимущественно с улучшением фитосанитарного состояния почвы (r = 0,732 + 0,886), а также с повышением физиологической устойчивости вегетативных органов к фузариозно-гельминтоспориозным заболеваниям, преобладанием в них процессов синтеза над гидролизом.
Для повышения физиологической устойчивости к возбудителям болезней важен баланс питательных веществ, особенно в отношении N-NO3, P2O5, K2O, который различается по культурам. Так, для повышения физиологической устойчивости растений картофеля к болезням отношение N: P: К рекомендуется 1: 1: 1,5 или 1: 1,5: 1,5 (преобладают фосфор и калий), а для повышения физиологической устойчивости хлопчатника к вилту на полях, заселенных пропагула-ми возбудителя выше ПВ, выдерживают N: P: К как 1: 0,8: 0,5 (преобладает азот).
Полное минеральное удобрение влияет на популяции фитофагов, обитающих в почве. Как общая закономерность отмечено снижение численности фитофагов при отсутствии заметного отрицательного влияния на энтомофагов. Так, смертность проволочников зависит от концентрации солей в почве, состава катионов и анионов, осмотического давления жидкостей в теле проволочников и наружном почвенном растворе. С повышением интенсивности обмена веществ у насекомых растет проницаемость их покровов для солей. Особенно проволочники чувствительны к минеральным удобрениям весной и летом.
Действие минеральных удобрений на проволочников зависит также от содержания гумуса в почве, ее механического состава и величин pH. Чем меньше в ней органического вещества, тем выше токсическое действие минеральных удобрений на насекомых. Биологическая эффективность NK и NPK на дерново-подзолистых почвах Белоруссии, внесенных под ячмень в звене севооборота ячмень - овес - гречиха, достигает в снижении численности проволочников соответственно 77 и 85 %. В то же время численность энтомофагов (жужелиц, стафилинид) в процентном отношении к вредителям не уменьшается, а в ряде случаев даже возрастает.
Систематическое применение полного минерального удобрения на полях ОПХ НИИСХ ЦЧП им. В. В. Докучаева способствует снижению численности и вредоносности проволочников до уровня ЭПВ. Вследствие этого в хозяйстве не требуется применения инсектицидов против этих вредителей.
Минеральные удобрения существенно ограничивают интенсивность размножения почвенных, или корне-клубневых, вредных организмов, снижают численность и длительность выживания их в почве и на(в) растительных остатках из-за повышения биологической и антагонистической активности почвы, роста устойчивости и выносливости (адаптивности) растений к вредным организмам. Внесение азотных удобрений повышает преимущественно выносливость (компенсаторные механизмы) растений к вредным организмам, а внесение фосфорных и калийных - физиологическую устойчивость к ним. Полное минеральное удобрение совмещает оба механизма положительного действия.
Устойчивый фитосанитарный эффект минеральных удобрений достигается дифференцированным подходом по зонам и культурам при определении доз и баланса питательных веществ макро- и микроудобрений на основе агрохимических картограмм и нормативного метода расчета. Однако с помощью минеральных удобрений кардинальное оздоровление почв от возбудителей корневых инфекций не достигается. Отдача зерна от возрастающих доз минеральных удобрений в условиях химизации земледелия снижается, если сельскохозяйственные культуры возделываются на почвах, инфицированных выше порога вредоносности. Это обстоятельство требует совместного применения фитосанитарных предшественников в севообороте, минеральных, органических удобрений и биологических препаратов для обогащения ризосферы растений антагонистами и снижения инфекционного потенциала возбудителей в почвах ниже ПВ. Для этого составляются почвенные фитосанитарные картограммы (ФПК) и на их основе разрабатываются мероприятия по оздоровлению почв.
Оздоровление почв является на современном этапе развития сельского хозяйства фундаментальной предпосылкой для повышения устойчивости и адаптивности агроэкосистем при переходе к адаптивно-ландшафтному земледелию и адаптивному растениеводству.

Все минеральные удобрения в зависимости от содержания главных питательных веществ подразделяются на фосфорные, азотные и калийные. Кроме того, производятся сложные минеральные удобрения, содержащие комплекс питательных веществ. Исходным сырьем для получения наиболее распространенных минеральных удобрений (суперфосфат, селитра, сильвинит, азотнотуковые и др.) служат природные (апатиты и фосфориты), калийные соли, минеральные кислоты, аммиак, и др. Технологические процессы получения минеральных удобрений разнообразны, чаще используют способ разложения фосфор-содержащего сырья минеральными кислотами.

Основными при производстве минеральных удобрений являются высокая запыленность воздуха и загрязнение его газами. Пыль и газы содержат и его соединения, фосфорную кислоту, соли азотной кислоты и другие химические соединения, являющиеся промышленными ядами (см. Яды промышленные).

Из всех веществ, входящих в состав минеральных удобрений, наиболее токсичными являются соединения фтора (см.), (см.) и азота (см.). Вдыхание пыли, содержащей минеральные удобрения, приводит к развитию катаров верхних дыхательных путей, ларингитов, бронхитов, (см.). При длительном контакте с пылью минеральных удобрений возможны хронические интоксикации организма, преимущественно в результате влияния фтора и его соединений (см. ). Группа азотных и сложных минеральных удобрений может оказывать вредное влияние на организм в связи с метгемоглобинообразованием (см. Метгемоглобинемия). Мероприятия по профилактике и улучшению условий труда в производстве минеральных удобрений заключаются в герметизации пыльных процессов, устройстве рациональной системы вентиляции (общей и местной), механизации и автоматизации наиболее трудоемких этапов производства.

Большое гигиеническое значение имеют меры личной профилактики. Все работающие на предприятиях по производству минеральных удобрений должны обеспечиваться спецодеждой. При работах, сопровождающихся большим выделением пыли, используются комбинезоны (ГОСТ 6027-61 и ГОСТ 6811 - 61). Обязательным является обеспыливание и обезвреживание спецодежды.

Важным мероприятием является использование противопылевых респираторов («Лепесток», У-2К и др.) и защитных очков. Для предохранения кожных покровов следует использовать защитные мази, (ИЭР-2, Чумакова, Селисского и др.) и индифферентные кремы и мази (силиконовый крем, ланолин, вазелин и др.). Меры личной профилактики включают также ежедневное мытье в душе, тщательное мытье рук и перед едой.

Работающие в производстве минеральных удобрений должны не реже двух раз в год проходить с участием терапевта, невропатолога, отоларинголога и обязательное рентгенологическое обследование костной системы.

Минеральные удобрения - химические вещества, вносимые в почву с целью получения высоких и устойчивых урожаев. В зависимости от содержания главных питательных веществ (азот, фосфор и калий) подразделяются на азотные, фосфорные и калийные удобрения.

Сырьем для получения минеральных удобрений служат фосфаты (апатиты и фосфориты), калийные соли, минеральные кислоты (серная, азотная, фосфорная), окислы азота, аммиак и т. п. Основной вредностью как при производстве, так и при транспортировке и применении минеральных удобрений в сельском хозяйстве является пыль. Характер воздействия этой пыли на организм, степень ее опасности зависят от химического состава удобрений и их агрегатного состояния. Работа с жидкими минеральными удобрениями (жидкий аммиак, аммиачная вода, аммиакаты и др.) связана, кроме того, с выделением вредных газов.

Токсическое действие пыли фосфатного сырья и готового продукта зависит от вида минеральных удобрений и определяется входящими в их состав соединениями фтора (см.) в виде солей фтористоводородной и кремнефтористо-водородной кислот, соединениями фосфора (см.) в виде нейтральных солей фосфорной кислоты, соединениями азота (см.) в виде солей азотной и азотистой кислот, соединениями кремния (см.) в виде двуокиси кремния в связанном состоянии. Наибольшую опасность представляют соединения фтора, которых в разных видах фосфатного сырья и минеральных удобрений содержится от 1,5 до 3,2%. Воздействие пыли фосфатного сырья и минеральных удобрений может вызывать у работающих катары верхних дыхательных путей, риниты, ларингиты, бронхиты, пневмокониозы и др., обусловливаемые главным образом раздражающим действием пыли. Местное раздражающее действие пыли зависит преимущественно от наличия в ней солей щелочных металлов. При длительном контакте с пылью минеральных удобрений возможны хронические интоксикации организма, преимущественно от воздействия соединений фтора (см. Флюороз). Наряду с флюорозогенным действием группа азотных и сложных минеральных удобрений обладает и метгемоглобинобразующим эффектом (см. Метгемоглобинемия), который обусловлен наличием в их составе солей азотной и азотистой кислот.

При производстве, транспортировке и применении минеральных удобрений в сельском хозяйстве необходимо соблюдать меры предосторожности. В производстве минеральных удобрений осуществляют систему противопылевых мероприятий: а) герметизацию и аспирацию пылящего оборудования; б) беспылевую уборку помещений; в) очистку от пыли воздуха, извлекаемого механической вентиляцией, перед выбросом его в атмосферу. Промышленность производит минеральные удобрения в гранулированном виде, в контейнерах, мешках и др. Это также препятствует интенсивному пылеобразованию при применении удобрений. Для защиты органов дыхания от пыли применяют респираторы (см.), спецодежду (см. Одежда, Очки). Целесообразно применение защитных мазей, наст (Селисского, ИЭР-2, Чумакова и др.) и индифферентных кремов (ланолин, вазелин и др.), предохраняющих кожные покровы работающих. Во время работы рекомендуется не курить, перед приемом пищи и воды следует тщательно прополаскивать рот. После работы необходимо принять душ. В пищевом рационе должно быть достаточно витаминов.

Работающие должны не реже двух раз в год проходить медосмотр с обязательной рентгенографией костной системы и грудной клетки.

Применение минеральных удобрений (даже в высоких дозах) не всегда приводит к прогнозируемому увеличению урожая.
Многочисленные исследования свидетельствуют о том, что погодные условия вегетационного периода оказывают настолько сильное влияние на развитие растений, что экстремально неблагоприятные погодные условия фактически нивелирует эффект повышения урожайности даже при высоких дозах внесения питательных веществ (Страпенянц и др., 1980; Федосеев, 1985). Коэффициенты использования питательных веществ из минеральных удобрений могут резко отличаться в зависимости от погодных условий вегетационного периода, снижаясь для всех культур в годы с недостаточным увлажнением (Юркин и др., 1978; Державин, 1992). В связи с этим, любые новые приемы повышения эффективности минеральных удобрений в районах неустойчивого земледелия заслуживают внимания.
Один из приемов увеличения эффективности использования питательных веществ из удобрений и почвы, укрепления иммунитета растений к неблагоприятным факторам среды и повышения качества получаемой продукции - использование гуминовых препаратов при возделывании сельскохозяйственных культур.
За последние 20 лет, значительно повысился интерес к гуминовым веществам, применяемым в сельском хозяйстве. Тема гуминовых удобрений не является новой ни для исследователей, ни для практиков-аграриев. Начиная с 50-х годов прошлого столетия изучалось влияние гуминовых препаратов на рост, развитие, урожай различных сельскохозяйственных культур. В настоящее время в связи с резким подорожанием минеральных удобрений гуминовые вещества широко применяются для увеличения эффективности использования питательных веществ из почвы и удобрений, повышения иммунитета растений к неблагоприятным факторам среды и повышения качества урожая получаемой продукции.
Разнообразно сырье для производства гуминовых препаратов. Это могут быть угли бурые и темные, торф, озерный и речной сапропель, вермикомпост, леонардит, а также различные органические удобрения и отходы.
Основным способом получения гуматов на сегодняшний день является технология высокотемпературного щелочного гидролиза сырья, в результате которой происходит высвобождение поверхностно-активных высокомолекулярных органических веществ различной массы, характеризующихся определенным пространственным строением и физико-химическими свойствами. Препаративная форма гуминовых удобрений может представлять собой порошок, пасту или жидкость с различными удельным весом и концентрацией действующего вещества.
Основным отличием для различных гуминовых препаратов является форма действующего компонента гуминовых и фульвокислот и (или) их солей – в водорастворимой, усвояемой или трудноусвояемой формах. Чем выше содержание органических кислот в гуминовом препарате, тем ценнее он как для индивидуального применения, так и особенно для получения комплексных удобрений с гуматами.
Различны способы применения гуминовых препаратов в растениеводстве: обработка посевного материала, некорневые подкормки, внесение водных растворов в почву.
Гуматы могут применяться как отдельно, так и в сочетании со средствами защиты растений, регуляторами роста, макро- и микроэлементами. Спектр их использования в растениеводстве чрезвычайно широк и включает практически все сельскохозяйственные культуры, производимые как в крупных аграрных предприятиях, так и в личных подсобных хозяйствах. В последнее время значительно выросло их использование на различных декоративных культурах.
Гуминовые вещества обладают комплексным действием, улучшающим состояние почвы и системы взаимодействия «почва – растения»:
- повышают подвижность усвояемого фосфора в почве и почвенных растворах, ингибируют иммобилизацию усвояемого фосфора и ретроградацию фосфора;
- кардинально улучшают баланс фосфора в почвах и фосфорное питание растений, выражающееся в увеличении доли фосфорорганических соединений, ответственных за перенос и трансформацию энергии, синтез нуклеиновых кислот;
- улучшают структуру почв, их газопроницаемость, водопроницаемость тяжелых почв;
- поддерживают органо-минеральный баланс почв, препятствуя их засолению, закислению и другим негативным процессам, приводящим к снижению или потере плодородия;
- сокращают вегетативный период за счет улучшения белкового обмена, концентрированной доставки питательных компонентов к плодовой части растений, насыщению их высокоэнергетическими соединениями (сахара, нуклеиновые кислоты и др. органические соединения), а также подавляют накопление нитратов в зеленой части растений;
- усиливают развитие корневой системы растения за счет полноценного питания и ускоренного деления клеток.
Особенно важными являются полезные свойства гуминовых компонентов для поддержания органо-минерального баланса почв при интенсивных технологиях. В статье Пола Фиксена «Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями» (Фиксен, 2010) приведена ссылка на системный анализ методов оценки эффективности использования элементов питания растениями. В качестве одного из значимых факторов, влияющих на эффективность использования элементов питания, указывается интенсивность технологий возделывания сельскохозяйственных культур и связанные с ними изменения структуры и состава почвы, в частности, иммобилизация элементов питания и минерализация органического вещества. Гуминовые компоненты в сочетании с ключевыми макроэлементами, прежде всего фосфором, поддерживают плодородие почв при интенсивных технологиях.
В работе Ивановой С.Е., Логиновой И.В.,Тиндалл Т. «Фосфор: механизмы потерь из почвы и способы их снижения» (Иванова и др., 2011) химическая фиксация фосфора в почвах отмечена как один из основных факторов низкой степени использования фосфора растениями (на уровне 5 - 25% от внесенного в 1-ый год количества фосфора). Повышение степени использования фосфора растениями в год внесения имеет выраженный экологический эффект – снижение попадания фосфора с поверхностным и подземным стоком в водоемы. Сочетание органической составляющей в виде гуминовых веществ с минеральной в удобрениях препятствует химической фиксации фосфора в малорастворимые фосфаты кальция, магния, железа и алюминия и сохраняют фосфор в доступной для растений форме.
По нашему мнению, очень перспективно применение гуминовых препаратов в составе минеральных макроудобрений.
В настоящее время существует несколько способов введения гуматов в сухие минеральные удобрения:
- поверхностная обработка гранулированных промышленных удобрений, которая широко применяется при приготовлении механических тукосмесей;
- механическое введение гуматов в порошок с последующей грануляцией при малотоннажном производстве минеральных удобрений.
- введение гуматов в плав при крупнотоннажном производстве минеральных удобрений (промышленное производство).
Очень широкое распространение в России и за рубежом получило применение гуминовых препаратов для производства жидких минеральных удобрений, используемых для листовых обработок посевов.
Цель настоящей публикации - показать сравнительную эффективность гуматизированных и обычных гранулированных минеральных удобрений на зерновых культурах (озимой и яровой пшенице, ячмене) и яровом рапсе в различных почвенно-климатических зонах России.
В качестве гуминового препарата для получения гарантированных высоких результатов по агрохимической эффективности был выбран гумат натрия «Сахалинский» со следующими показателями (табл. 1 ).

Производство гумата «Сахалинский» основано на использовании бурых углей Солнцевского месторождения о. Сахалин, имеющих очень высокую концентрацию гуминовых кислот в усвояемой форме (более 80%). Щелочная вытяжка из бурых углей этого месторождения представляет собой практически полностью растворимый в воде негигроскопичный и неслеживающийся порошок темно-коричневого цвета. В состав продукта переходят также микроэлементы и цеолиты, способствующие аккумуляции питательных веществ и регулированию обменного процесса.
Кроме указанных показателей гумата натрия «Сахалинский», важным фактором его выбора в качестве гуминовой добавки было производство концентрированных форм гуминовых препаратов в промышленных количествах, высокие агрохимические показатели индивидуального применения, содержание гуминовых веществ преимущественно в водорастворимой форме и наличие жидкой формы гумата для равномерного распределения в грануле при промышленном производстве, а также государственная регистрация в качестве агрохимиката.
В 2004 г. на ОАО «Аммофос» в г. Череповец была выпущена опытная партия нового вида удобрения – азофоски (нитроаммофоски) марки 13:19:19, с добавкой гумата натрия «Сахалинский» (щелочная вытяжка из леонардита) в пульпу по технологии, разработанной в ОАО «НИУИФ». Показатели качества гуматизированной аммофоски 13:19:19 приведены в табл. 2 .

Основной задачей при проведении промышленных испытаний было обоснование оптимального способа ввода гуматной добавки «Сахалинский» с сохранением водорастворимой формы гуматов в продукте. Известно, что гуминовые соединения в кислых средах (при pH<6) переходят в формы водорастворимых гуматов (H-гуматы) с потерей их эффективности.
Ввод порошкообразного гумата «Сахалинский» в ретур при производстве комплексных удобрений обеспечил отсутствие контакта гумата с кислой средой в жидкой фазе и его нежелательных химических трансформаций. Это подтвердил последующий анализ готовых удобрений с гуматами. Ввод гумата фактически на финальной стадии технологического процесса определил сохранение достигнутой производительности технологической системы, отсутствие возвратных потоков и дополнительных выбросов. Не отмечено и ухудшения физико-химических комплексных удобрений (слеживаемость, прочность гранул, пылимость) при наличии гуминовой составляющей. Аппаратурное оформление узла ввода гумата также не представляло сложностей.
В 2004 г. в ЗАО «Сет-Орел Инвест» (Орловская область) был проведен производственный опыт с внесением гуматизированной аммофоски под ячмень. Прибавка урожая ячменя на площади 4532 га от применения гуматизированного удобрения по сравнению со стандартной аммофоской марки 13:19:19 составила 0.33 т/га (11%), содержание белка в зерне повысилось с 11 до 12.6% (табл. 3 ), что дало хозяйству дополнительную прибыль в размере 924 руб/га.

В 2004 г. в ГФУП ОПХ «Орловское» ВНИИ зернобобовых и крупяных культур (Орловская область) проводились полевые опыты по изучению влияния гуматизированной и обычной аммофоски (13:19:19) на урожай и качество яровой и озимой пшеницы.

Схема опытов:

    Контроль (без удобрений)
    N26 P38 K38 кг д.в./га
    N26 P38 K38 кг д.в./га гуматизированное
    N39 P57 K57 кг д.в./га
    N39 P57 K57 кг д.в./га гуматизированное.
Опыты с озимой пшеницей (сорт Московская-39) проводились по двум предшественникам - черный и сидеральный пар. Анализ результатов опыта с озимой пшеницей показал, что гуматизированные удобрения оказывают положительное влияние на урожайность, а также содержание белка и клейковины в зерне по сравнению с традиционным удобрением. Максимальная урожайность (3.59 т/га) наблюдалась в варианте с внесением повышенной дозы гуматизированного удобрения (N39 P57 K57). В этом же варианте получено самое высокое содержание белка и клейковины в зерне (табл. 4 ).

В опыте с яровой пшеницей (сорт Смена) максимальная урожайность 2.78 т/га наблюдалась также при внесении повышенной дозы гуматизированного удобрения. В этом же варианте наблюдалось самое высокое содержание белка и клейковины в зерне. Как и в опыте с озимой пшеницей, внесение гуматизированного удобрения статистически значимо увеличивало урожайность и содержание белка и клейковины в зерне по сравнению с внесением такой же дозы стандартного минерального удобрения. Последний работает не только как индивидуальный компонент, но и улучшает усвояемость растениями фосфора и калия, уменьшает потери азота в азотном цикле питания и в целом улучшает обмен между почвой, почвенными растворами и растениями.
Значимое улучшение качества урожая и озимой и яровой пшеницы свидетельствует о повышении эффективности минерального питания продукционной части растения.
По результатам действия гуматную добавку можно сравнить с влиянием микрокомпонентов (бор, цинк, кобальт, медь, марганец и др.). При относительно небольшом содержании (от десятых долей до 1%) гуматные добавки и микроэлементы обеспечивают практически одинаковое повышение урожайности и качества сельскохозяйственной продукции. В работе (Аристархов, 2010) изучено влияние микроэлементов на урожайность и качество зерна зерновых и зернобобовых и показано увеличение белка и клейковины на примере озимой пшеницы при основном внесении на различных типах почв. Направленное влияние микроэлементов и гуматов на продуктивную часть культур сопоставимо по получаемым результатам.
Высокие агрохимические результаты производства при минимальной доработке аппаратурной схемы крупнотоннажного производства комплексных удобрений, полученные от применения гуматизированной аммофоски (13:19:19) с гуматом натрия «Сахалинский», позволили расширить спектр гуматизированных марок комплексных удобрений с включением нитратсодержащих марок.
В 2010 г. в ОАО «Минеральные удобрения» (г. Россошь, Воронежская область) была произведена партия гуматизированной азофоски 16:16:16 (N:P 2 О 5:K 2 О) с содержанием гумата (щелочная вытяжка из леонардита) – не менее 0.3% и влаги – не более 0.7%.
Азофоска с гуматами представляла собой гранулированное органоминеральное удобрение светло-серого цвета, отличающееся от стандартного только присутствием в нем гуминовых веществ, что придавало едва заметный светло-серый оттенок новому удобрению. Азофоска с гуматами была рекомендована в качестве органоминерального удобрения для основного и «припосевного» внесения в почву и для корневых подкормок под все культуры, где возможно применение обычной азофоски.
В 2010 и 2011 гг. на опытном поле ГНУ Московский НИИСХ «Немчиновка» проводили исследования с гуматизированной азофоской производства ОАО «Минеральные удобрения» в сравнении со стандартной, а также с калийными удобрениями (хлористый калий), содержащими гуминовые кислоты (КалиГум), в сравнении с традиционным калийным удобрением KCl.
Полевые опыты проводили по общепринятой методике (Доспехов, 1985) на опытном поле Московского НИИСХ «Немчиновка».
Отличительная особенность почв опытного участка - высокое содержание фосфора (порядка 150-250 мг/кг), и среднее калия (80-120 мг/кг). Это обусловило отказ от основного внесения фосфорных удобрений. Почва дерново-подзолистая среднесуглинистая. Агрохимическая характеристика почвы перед закладкой опыта: содержание органического вещества – 3.7%, рНсол.–5.2, NH 4 – – следы, NО 3 – – 8 мг/кг, Р 2 О 5 и К 2 О (по Кирсанову) – 156 и 88 мг/кг соответственно, СаО – 1589 мг/кг, MgO – 474 мг/кг.
В опыте с азофоской и рапсом размер опытной делянки составлял 56 м 2 (14м х 4м), повторность – четырехкратная. Предпосевная обработка почвы после основного внесения удобрений – культиватором и непосредственно перед посевом - РБК (ротационной бороной-культиватором). Посев – сеялкой Амазон в оптимальные агротехнические сроки, глубина заделки семян 4-5 см - для пшеницы и 1-3 см – для рапса. Нормы высева: пшеницы – 200 кг/га, рапса – 8 кг/га.
В опыте использовали яровую пшеницу сорт МИС и яровой рапс сорт Подмосковный. Сорт МИС - высокопродуктивный среднеспелый, позволяющий стабильно получать зерно, пригодное для производства макаронных изделий. Сорт устойчив к полеганию; значительно слабее стандарта поражается бурой ржавчиной, мучнистой росой и твердой головней.
Яровой рапс Подмосковный - среднеспелый, вегетационный период 98 дней. Экологически пластичен, отличается равномерным цветением и созреванием, устойчивостью к полеганию 4.5-4.8 балла. Низкое содержание глюкозинолатов в семенах позволяет использовать жмых и шроты в рационах животных и птицы в повышенных нормах.
Урожай пшеницы убирали в фазу полной спелости зерна. Рапс скашивали на зеленый корм в фазу цветения. Опыты для яровой пшеницы и рапса заложены по одной схеме.
Анализ почвы и растений проводили согласно стандартным и общепринятым в агрохимии методам.

Схема опытов с азофоской:


    Фон (50 кг д.в. N/га в подкормку)
    Фон+азофоска основное внесение 30 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 30 кг д.в. NPK/га
    Фон+азофоска основное внесение 60 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 60 кг д.в. NPK/га
    Фон+азофоска основное внесение 90 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 90 кг д.в. NPK/га
Агрохимическую эффективность комплексные удобрения с гуматами продемонстрировали и в экстремально засушливых условиях 2010 г., подтвердив ключевое значение гуматов для стрессоустойчивости культур за счет активации обменных процессов при водном голодании.
В годы проведения исследований погодные условия значительно отличались от средних многолетних для Нечерноземной зоны. В 2010 году май и июнь были благоприятными для развития сельскохозяйственных культур, и у растений были заложены генеративные органы с перспективой на будущий урожай зерна порядка 7 т/га у яровой пшеницы (как в 2009 году) и 3 т/га – у рапса. Однако, как и во всем Центральном регионе РФ, в Московской области с начала июля и до уборки урожая пшеницы в начале августа наблюдалась длительная засуха. Среднесуточные температуры в этот период были превышены на 7 о С, а дневные температуры в течение длительного времени были выше 35 о С. Отдельные кратковременные осадки выпадали в виде ливневых дождей и вода стекала с поверхностным стоком и испарялась, лишь частично впитываясь в почву. Насыщение почвы влагой в кратковременные периоды дождей не превышало глубины проникновения 2-4 см. В 2011 году в первой декаде мая после посева и во время всходов растений осадков выпало почти в 4 раза меньше (4 мм) средневзвешенной многолетней нормы (15 мм).
Среднесуточная температура воздуха в этот период (13.9 о С) была значительно выше среднесуточной многолетней температуры (10.6 о С). Количество осадков и температура воздуха во 2-ую и 3-ю декады мая значительно не отличались от количества средневзвешенных осадков и среднесуточных температур.
В июне осадков выпало значительно меньше средней многолетней нормы, температура воздуха превышала среднесуточные на 2-4 о С.
Жарким и сухим был июль. Всего за вегетационный период осадков выпало на 60 мм меньше нормы, а среднесуточная температура воздуха была примерно на 2 о С выше средней многолетней. Неблагоприятные погодные условия 2010 и 2011 годов не могли не сказаться на состоянии посевов. Засуха совпала с фазой налива зерна у пшеницы, что, в конечном итоге, привело к значительному снижению урожая.
Длительная воздушная и почвенная засуха в 2010 году не дали ожидаемого эффекта от возрастающих доз азофоски. Это проявилось как на пшенице, так и на рапсе.
Дефицит влаги оказался главным препятствием в реализации заложенного почвенного плодородия, при этом урожайность пшеницы в целом была в два раза ниже, чем в аналогичном опыте 2009 года (Гармаш и др., 2011). Прибавки урожая при внесении 200, 400 и 600 кг/га азофоски (физического веса) были практически одинаковы (табл. 5 ).

Низкая урожайность пшеницы обусловлена, в основном, щуплостью зерна. Масса 1000 зерен на всех вариантах опыта равнялась 27 – 28 грамм. Данные по структуре урожая на вариантах достоверно не различалась. В массе снопа зерно составляло около 30% (при нормальных погодных условия этот показатель составляет до 50%). Коэффициент кущения равен 1.1-1.2. Масса зерна в колосе составляла 0.7-0.8 грамм.
В то же время, в вариантах опыта с гуматизированной азофоской получена достоверная прибавка урожая при увеличении доз удобрений. Это обусловлено, прежде всего, лучшим общим состоянием растений и развитием более мощной корневой системы при применении гуматов на фоне общего стресса посевов от длительной и продолжительной засухи.
Значительный эффект от применения гуматизированной азофоски проявился на начальном этапе развития растений рапса. После посева семян рапса в результате кратковременного ливня с последующими высокими температурами воздуха на поверхности почвы образовалась плотная корка. Поэтому всходы на вариантах с внесением обычной азофоски были неравномерными и сильно изреженными по сравнению с вариантами с гуматизированной азофоской, что привело к значительным различиям в урожае зеленой массы (табл. 6 ).

В опыте с калийными удобрениями площадь опытной делянки составляла – 225 м 2 (15 м х 15 м), повторность опыта – четырехкратная, расположение делянок – рендомизированное. Площадь опыта – 3600 м 2 . Опыт проведен в звене севооборота озимые зерновые – яровые зерновые - занятый пар. Предшественник яровой пшеницы – озимое тритикале.
Удобрения вносили вручную из расчета: азота – 60, калия – 120 кг д.в. на га. В качестве азотных удобрений применяли аммиачную селитру, в качестве калийных – калий хлористый и новое удобрение КалиГум. В опыте выращивали яровую пшеницу сорт Злата, рекомендованный для возделывания в Центральном регионе. Сорт раннеспелый с потенциалом продуктивности до 6.5 т/га. Устойчив к полеганию, значительно слабее стандартного сорта поражается бурой ржавчиной и мучнистой росой, на уровне стандартного сорта – септориозом. Семена до посева обрабатывали протравителем «Винцит» в рекомендуемых производителем нормах. В фазе кущения проводили подкормку посевов пшеницы аммиачной селитрой из расчета 30 кг д.в. на 1 га.

Схема опытов с калийными удобрениями:

    Контроль (без удобрений).
    N60 основное + N30 подкормка
    N60 основное + N30 подкормка + К 120 (КCl)
    N60 основное + N30 подкормка + К 120 (КалиГум)
В опытах с калийными удобрениями отмечена тенденция увеличения урожая зерна пшеницы в варианте с испытуемым удобрением КалиГум по сравнению с традиционным хлористым калием. Содержание белка в зерне при внесении гуматизированного удобрения КалиГум было выше на 1.3% по сравнению с KCl. Самое высокое содержание белка наблюдалось на вариантах с минимальным урожаем – контроле и варианте с внесением азота (N60 + N30). Данные по структуре урожая на вариантах достоверно не различалась. Масса 1000 зерен и масса зерна в колосе по вариантам были практически одинаковы и составляли 38.1-38.6 г и 0.7-0.8 г соответственно (табл. 7 ).

Таким образом, полевыми опытами достоверно доказана агрохимическая эффективность комплексных удобрений с добавками гуматов, определяемые по прибавке урожайности и содержанию белка в зерновых культурах. Для обеспечения этих результатов необходим правильный выбор гуминового препарата с высокой долей водорастворимых гуматов, его формы и места ввода в технологический процесс на финальных стадиях. Это позволяет достигать относительно небольшого содержания гуматов (0.2 - 0.5% мас.) в гуматизированных удобрениях и обеспечивать равномерное распределение гуматов по грануле. При этом важным фактором является сохранение высокой доли водорастворимой формы гуматов в гуматизированных удобрениях.
Комплексные удобрения с гуматами повышают устойчивость сельскохозяйственных культур к негативным погодно-климатическим условиям в частности, к засухе, ухудшению структуры почв. Они могут быть рекомендованы как эффективные агрохимикаты в зонах рискованного земледелия, а также при использовании интенсивных методов земледелия со съемом нескольких урожаев в год для поддержания высокого плодородия почв в частности, в расширяющихся зонах с дефицитным водным балансом и аридных зонах. Высокая агрохимическая эффективность гуматизированной аммофоски (13:19:19) определяется комплексным действием минеральной и органической частей с усилением действия питательных компонентов, прежде всего фосфорного питания растений, улучшением обмена веществ между почвой и растениями, повышением стрессоустойчивости растений.

Левин Борис Владимирович – кандидат технических наук, заместитель ген. директора, директор по технической политике АО «ФосАгро-Череповец»; e-mail: [email protected] .

Озеров Сергей Александрович – начальник управления анализа рынка и планирования продаж АО «ФосАгро-Череповец»; e-mail: [email protected] .

Гармаш Григорий Александрович - заведующий лабораторией аналитических исследований ФГБНУ «Московский НИИСХ «Немчиновка», кандидат биологических наук; e-mail: [email protected] .

Гармаш Нина Юрьевна - ученый секретарь ФГБНУ «Московский НИИСХ «Немчиновка», доктор биологических наук; e-mail: [email protected] .

Латина Наталья Валерьевна - генеральный директор ООО «Биомир 2000», директор производства ГК Сахалинские Гумат; e-mail: [email protected] .

Литература

Пол И. Фиксен Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями // Питание растений: Вестник Международного института питания растений, 2010, №1. – с. 2-7.


Иванова С.Е., Логинова И.В., Танделл Т. Фосфор: механизмы потерь из почвы и способы их снижения // Питание растений: Вестник Международного института питания растений, 2011, №2. – с. 9-12.
Аристархов А.Н. и др. Действие микроудобрений на урожайность, сбор белка и качество продукции зерновых и зернобобовых культур // Агрохимия, 2010, №2. – с. 36-49.
Страпенянц Р.А., Новиков А.И., Стребков И.М., Шапиро Л.З., Кирикой Я.Т. Моделирование закономерностей действия минеральных удобрений на урожай // Вестник с.-х. науки, 1980, № 12. – с. 34-43.
Федосеев А.П. Погода и эффективность удобрений. Ленинград: Гидрометиздат, 1985. – 144 с.
Юркин С.Н., Пименов Е.А., Макаров Н.Б. Влияние почвенно-климатических условий и удобрений на расход основных элементов питания урожаем пшеницы // Агрохимия, 1978, № 8. – С. 150-158.
Державин Л.М. Применение минеральных удобрений в интенсивном земледелии. М.: Колос, 1992. – 271 с.
Гармаш Н.Ю., Гармаш Г.А., Берестов А.В., Морозова Г.Б. Микроэлементы в интенсивных технологиях производства зерновых культур //Агрохимический вестник, 2011, № 5. – С. 14-16.

Кубанский государственный университет

Биологический факультет

по дисциплине «Экология почв»

«Скрытое отрицательное действие удобрений».

Выполнила

Афанасьева Л. Ю.

студентка 5-ого курса

(специальность –

«Биоэкология»)

Проверила Букарева О. В.

Краснодар, 2010

Введение…………………………………………………………………………………...3

1. Влияние минеральных удобрений на почвы…………………………………...4

2. Влияние минеральных удобрений на атмосферный воздух и воду…………..5

3. Влияние минеральных удобрений на качество продукции и здоровье людей………………………………………………………………………………………6

4. Геоэкологические последствия применения удобрений……………………...8

5. Воздействие удобрений на окружающую среду……………………………..10

Заключение……………………………………………………………………………….17

Список использованной литературы…………………………………………………...18

Введение

Загрязнение почв чужеродными химическими веществами наносит им большой ущерб. Существенным фактором загрязнения среды является химизация сельского хозяйства. Даже минеральные удобрения при неправильном их применении способны наносить экологический ущерб при сомнительном экономическом эффекте.

Многочисленные исследования ученых–агрохимиков показали, что разные виды и формы минеральных удобрений неодинаково влияют на свойства почв. Внесенные в почву удобрения вступают в сложные взаимодействия с нею. Здесь происходят всевозможные превращения, которые зависят от целого ряда факторов: свойств удобрений и почвы, погодных условий, агротехники. От того, как происходит превращение отдельных видов минеральных удобрений (фосфорных, калийных, азотных), зависит влияние их на почвенное плодородие.

Минеральные удобрения – неизбежное следствие интенсивного земледелия. Имеются расчеты, что для достижения желаемого эффекта от применения минеральных удобрений мировое потребление их должно составить около 90 кг/год на человека. Суммарное производство удобрений в этом случае достигает 450-500 млн. т/год, в настоящее же время их мировое производство равно 200-220 млн. т/год или 35-40 кг/год на человека.

Применение удобрений можно рассматривать как одно из проявлений закона увеличения вложения энергии в единицу производимой сельскохозяйственной продукции. Это значит, что для получения одной и той же прибавки урожая требуется все большее количество минеральных удобрений. Так, на начальных этапах применения удобрений прибавку 1 т зерна с 1 га обеспечивает внесение 180-200 кг азотных туков. Следующая дополнительная тонна зерна связана с дозой удобрений в 2-3 раза большей.

Экологические последствия применения минеральных удобрений целесообразно рассматривать, по крайней мере, с трех точек зрения:

Местное влияние удобрений на экосистемы и почвы, в которые они вносятся.

Запредельное влияние на другие экосистемы и их звенья, прежде всего на водную среду и атмосферу.

Влияние на качество продукции, получаемой с удобренных почв, и здоровье людей.

1. Влияние минеральных удобрений на почвы

В почве как системе происходят такие изменения, которые ведут к потере плодородия:

Повышается кислотность;

Изменяется видовой состав почвенных организмов;

Нарушается круговорот веществ;

Разрушается структура, ухудшающая другие свойства.

Имеются данные (Минеев, 1964), что следствием увеличения кислотности почв при применении удобрений (прежде всего кислых азотных) является повышенное вымывание из них кальция и магния. Для нейтрализации данного явления приходится вносить в почву эти элементы.

Фосфорные удобрения не обладают столь выраженным подкисляющим эффектом, как азотные, но они могут вызывать цинковое голодание растений и накопление стронция в получаемой продукции.

Многие удобрения содержат посторонние примеси. В частности, их внесение может повышать радиоактивный фон, вести к прогрессивному накоплению тяжелых металлов. Основной способ уменьшить эти следствия – умеренное и научно обоснованное применение удобрений:

Оптимальные дозы;

Минимальное количество вредных примесей;

Чередование с органическими удобрениями.

Следует также помнить выражение, что «минеральные удобрения являются средством маскировки реальностей». Так, имеются данные, что с продуктами эрозии почв выносится больше минеральных веществ, чем их вносится с удобрениями.

2. Влияние минеральных удобрений на атмосферный воздух и воду

Влияние минеральных удобрений на атмосферный воздух и воду связано в основном с их азотными формами. Азот минеральных удобрений поступает в воздух либо в свободном виде (в результате денитрификации), либо в виде летучих соединений (например, в форме закиси N2 O).

По современным представлениям, газообразные потери азота из азотных удобрений составляют от 10 до 50% от его внесения. Действенным средством снижения газообразных потерь азота является научно обоснованное их применение:

Внесение в корнеобразующую зону для быстрейшего поглощения растениями;

Использование веществ-ингибиторов газообразных потерь (нитропирин).

Наиболее ощутимое влияние на водные источники, кроме азотных, оказывают фосфорные удобрения. Вынос удобрений в водные источники сводится к минимуму при их правильном внесении. В частности, недопустимо разбрасывание удобрений по снеговому покрову, рассеивание их с летательных аппаратов вблизи водоемов, хранение под открытым небом.

3. Влияние минеральных удобрений на качество продукции и здоровье людей

Минеральные удобрения способны оказывать отрицательное воздействие как на растения, так и на качество растительной продукции, а также на организмы, ее потребляющие. Основные из таких воздействий представлены в таблицах 1, 2.

При высоких дозах азотных удобрений увеличивается риск заболеваний растений. Имеет место чрезмерное накопление зеленой массы, и резко возрастает вероятность полегания растений.

Многие удобрения, особенно хлорсодержащие (хлористый аммоний, хлористый калий), отрицательно действуют на животных и человека в основном через воду, куда поступает высвобождающийся хлор.

Отрицательное действие фосфорных удобрений связано в основном с содержащимися в них фтором, тяжелыми металлами и радиоактивными элементами. Фтор при его концентрации в воде более 2 мг/л может способствовать разрушению эмали зубов.

Таблица 1 – Воздействие минеральных удобрений на растения и качество растительной продукции

Виды удобрений

Влияние минеральных удобрений

положительное

отрицательное

При высоких дозах или несвоевременных способах внесения – накопление в виде нит-ратов, буйный рост в ущерб устойчивости, повышенная заболеваемость, особенно гриб-ными болезнями. Хлористый аммоний спо-собствует накоплению Cl. Основные накопи-тели нитратов – овощи, кукуруза, овес, табак.

Фосфорные

Снижают отрицатель-ные воздействия азота; улучшают качество продукции; способст-вуют повышению ус-тойчивости растений к болезням.

При высоких дозах возможны токсикозы растений. Действуют в основном через содер-жащиеся в них тяжелые металлы (кадмий, мышьяк, селен), радиоактивные элементы и фтор. Основные накопители – петрушка, лук, щавель.

Калийные

Аналогично фосфор-ным.

Действуют в основном через накопление хлора при внесении хлористого калия. При избытке калия – токсикозы. Основные нако-пители калия – картофель, виноград, гречиха, овощи закрытого грунта.


Таблица 2 – Воздействие минеральных удобрений на животных и человека

Виды удобрений

Основные воздействия

Нитратные формы

Нитраты (ПДК для воды 10 мг/л, для пищевых продуктов – 500 мг/день на человека) восстанавливаются в организме до нитритов, вызывающих нарушение обмена веществ, отравления, ухудшение иммунологического статуса, метгемоглобинию (кислородное голодание тканей). При взаимодействии с аминами (в желудке) образуют нитрозамины – опаснейшие канцерогены.

У детей могут вызывать тахикардию, цианоз, потерю ресниц, разрыв альвеол.

В животноводстве: авитаминозы, уменьшение продук-тивности, накопления мочевины в молоке, повышение забо-леваемости, снижение плодовитости.

Фосфорные

Суперфосфат

Действуют в основном через фтор. Избыток его в питьевой воде (более 2 мг/л) вызывает повреждение эмали зубов у человека, потерю эластичности кровеносных сосудов. При содержании более 8 мг/л – остеохондрозные явления.

Хлористый калий

Хлористый аммоний

Потребление воды с содержанием хлора более 50 мг/л вызывает отравления (токсикозы) человека и животных.

4. Геоэкологические последствия применения удобрений

Для своего развития растения нуждаются в определенном количестве биогенных веществ (соединений азота, фосфора, калия), обычно поглощаемых из почвы. В естественных экосистемах биогены, ассимилированные растительностью, возвращаются в почву в результате процессов деструкции в круговороте вещества (разложения плодов, растительного опада, отмерших побегов, корней). Некоторое количество соединений азота фиксируется бактериями из атмосферы. Часть биогенов привносится с осадками. На отрицательной стороне баланса находятся инфильтрация и поверхностный сток растворимых соединений биогенов, их вынос с почвенными частицами в процессе эрозии почвы, а также преобразование соединений азота в газообразную фазу с уходом ее в атмосферу.

В природных экосистемах скорость накопления или расходования питательных веществ обычно невелика. Например, для девственной степи на черноземах Русской равнины соотношение между потоком соединений азота через границы избранного участка степи и его запасами в верхнем метровом слое составляет около 0,0001% или 0,01%.

Сельское хозяйство нарушает естественный, практически замкнутый баланс биогенов. Ежегодный урожай уносит часть биогенов, содержащихся в произведенном продукте. В агроэкосистемах скорость выноса питательных веществ на 1-3 порядка больше, чем в природных системах, причем, чем выше урожай, тем относительно больше интенсивность выноса. Следовательно, даже если первоначальный запас питательных веществ в почве и был значительным, в агроэкосистеме он может израсходоваться сравнительно быстро.

Всего в мире с урожаем зерна выносится, например, около 40 млн. т. азота в год, или примерно 63 кг на 1 га площади зерновых. Отсюда следует необходимость применения удобрений для поддержания плодородия почвы и повышения урожаев, так как при интенсивном земледелии без удобрений плодородие почвы снижается уже на второй год. Обычно применяются азотные, фосфорные и калийные удобрения в различных формах и сочетаниях, в зависимости от местных условий. В то же время, применение удобрений маскирует деградацию почв, заменяя естественное плодородие на плодородие, базирующееся в основном на химических веществах.

Производство и потребление удобрений в мире неуклонно росло, увеличившись за 1950-1990 гг. приблизительно в 10 раз. Среднее мировое использование удобрений в 1993 г. составляло 83 кг на 1 га пашни. За этой средней величиной скрыта большая разница в потреблении различных стран. В Нидерландах применяется больше всего удобрений, и там уровень применения удобрений в последние годы даже сократился: от 820 кг/га до 560 кг/га. С другой стороны, среднее потребление удобрений в Африке в 1993 г. составляло лишь 21 кг/га, причем в 24 странах применяли 5 кг/га и менее.

Наряду с положительными эффектами, удобрения создают также экологические проблемы, в особенности в странах с высоким уровнем их применения.

Нитраты опасны для здоровья человека, если их концентрация в питьевой воде или продуктах сельского хозяйства выше установленной ПДК. Концентрация нитратов в воде, стекающей с полей, обычно находится между 1 и 10 мг/л, а с нераспаханных земель она на порядок меньше. По мере роста массы и продолжительности применения удобрений, все большее количество нитратов попадает в поверхностные и подземные воды, делая их непригодными для питья. Если уровень применения азотных удобрений не превышает 150 кг/га в год, то в природные воды попадает примерно 10% от объема применяемых удобрений. При более высокой нагрузке эта доля еще выше.

В особенности серьезна проблема загрязнения подземных вод после того, как нитраты попали в водоносный горизонт. Водная эрозия, унося почвенные частицы, переносит также содержащиеся в них и адсорбированные на них соединения фосфора и азота. Если они попадают в водные объекты с замедленным водообменом, улучшаются условия для развития процесса эвтрофикации. Так, в реках США главным загрязнителем воды стали растворенные и взвешенные соединения биогенов.

Зависимость сельского хозяйства от минеральных удобрений привела к серьезным сдвигам в глобальных циклах азота и фосфора. Промышленное производство азотных удобрений привело к нарушению глобального баланса азота вследствие роста объема доступных для растений соединений азота на 70% по сравнению с доиндустриальным периодом. Избыток азота может изменить кислотность почв, а также содержание в них органического вещества, что может привести к дальнейшему выщелачиванию питательных веществ из почвы и ухудшению качества природных вод.

По оценке ученых, смыв фосфора со склонов в процессе почвенной эрозии составляет не менее 50 млн. т. в год. Эта цифра сравнима с годовым объемом промышленного производства фосфорных удобрений. В 1990 г. столько же фосфора было вынесено реками в океан, сколько было внесено на поля, а именно 33 млн. т. Поскольку газообразных соединений фосфора не существует, он перемещается под воздействием силы тяжести, главным образом с водой, преимущественно с континентов в океаны. Это ведет к хроническому дефициту фосфора на суше и к еще одному глобальному геоэкологическому кризису.

5. Воздействие удобрений на окружающую среду

Отрицательное действие удобрений на окружающую среду связано, прежде всего, с несовершенством свойств и химического состава удобрений. Существенными недостатками многих минеральных удобрений являются:

Наличие остаточной кислоты (свободная кислотность) вследствие технологии их производства.

Физиологическая кислотность и щелочность, образующаяся в результате преимущественного использования растениями из удобрений катионов или анионов. Длительное применение физиологически кислых или щелочных удобрений изменяет реакцию почвенного раствора, приводит к потерям гумуса, увеличивает подвижность и миграцию многих элементов.

Высокая растворимость туков. В удобрениях, в отличие от природных фосфатных руд, фтор находится в виде растворимых соединений и легко поступает в растение. Повышенное накопление фтора в растениях нарушает обмен веществ, ферментативную активность (ингибирует действие фосфатазы), отрицательно действует на фото- и биосинтез белка, развитие плодов. Повышенные дозы фтора угнетают развитие животных, приводят к отравлению.

Наличие тяжелых металлов (кадмия, свинца, никеля). Наиболее загрязнены тяжелыми металлами фосфорные и комплексные удобрения. Это связано с тем, что практически все фосфорные руды содержат большие количества стронция, редкоземельные и радиоактивные элементы. Расширение производства и применение фосфорных и комплексных удобрений ведет к загрязнению окружающей среды соединениями фтора, мышьяка.

При существующих кислотных способах переработки природного фосфатного сырья степень утилизации соединений фтора в производстве суперфосфата не превышает 20-50%, в производстве комплексных удобрений – еще меньше. Содержание фтора в суперфосфате достигает 1-1,5, в аммофосе 3-5 %. В среднем с каждой тонной необходимого растениям фосфора на поля поступает около 160 кг фтора.

Однако важно понимать, что не сами минеральные удобрения как источники биогенных элементов загрязняют окружающую среду, а их сопутствующие компоненты.

Внесенные в почву растворимые фосфорные удобрения в значительной степени поглощаются почвой и становятся малодоступными растениям и не передвигаются по почвенному профилю. Установлено, что первая культура использует из фосфорных удобрений всего 10-30% Р2 О5, а остальное количество остается в почве и претерпевает всевозможные превращения. Например, в кислых почвах фосфор суперфосфата в большей части превращается в фосфаты железа и алюминия, а в черноземных и во всех карбонатных почвах – в нерастворимые фосфаты кальция. Систематическое и длительное применение фосфорных удобрений сопровождается постепенным окультуриванием почв.

Известно, что длительное применение больших доз фосфорных удобрений может привести к так называемому «зафосфачиванию», когда почва обогащается усвояемыми фосфатами и новые порции удобрений не оказывают эффекта. В этом случае избыток фосфора в почве может нарушить соотношение между питательными веществами и иногда снижает доступность растениям цинка и железа. Так, в условиях Краснодарского края на обыкновенных карбонатных черноземах при обыкновенном внесении Р2 О5 кукуруза неожиданно резко снижала урожайность. Приходилось изыскивать способы оптимизации элементного питания растений. Зафосфачивание почв является определенным этапом их окультуривания. Это результат неизбежного процесса накопления «остаточного» фосфора, когда удобрения вносятся в количестве, превышающем вынос фосфора с урожаем.

Как правило, этот «остаточный» фосфор удобрении отличается большей подвижностью, доступностью растениям, чем природные фосфаты почвы. При систематическом и длительном внесении этих удобрений необходимо изменять соотношения между питательными элементами с учетом их остаточного действия: дозу фосфора следует уменьшать, а дозу азотных удобрений увеличивать.

Калий удобрений , внесенный в почву, подобно фосфору, не остается в неизменном виде. Часть его находится в почвенном растворе, часть переходит в поглощено-обменное состояние, а часть превращается в необменную, малодоступную для растений форму. Накопление доступных форм калия в почве, а также превращение в недоступное состояние в результате длительного применения калийных удобрений зависит в основном от свойств почвы и погодных условий. Так, в черноземных почвах количество усвояемых форм калия под влиянием удобрения хотя и увеличивается, но в меньшей мере, чем на дерново-подзолистых почвах, так как в черноземах калий удобрений больше превращается в необменную форму. В зоне с большим количеством осадков и при поливном земледелии возможно вымывание калия удобрений за пределы корнеобитаемого слоя почвы.

В районах с недостаточным увлажнением, в условиях жаркого климата, где почвы периодически увлажняются и пересыхают, наблюдаются интенсивные процессы фиксации калия удобрений почвой. Под влиянием фиксации калий удобрений переходит в необменное, малодоступное растениям состояние. Большое значение на степень фиксации калия почвами имеет тип почвенных минералов, наличие минералов, обладающих высокой фиксирующей способностью. Таковыми являются глинные минералы. Большей способностью фиксировать калий удобрений обладают черноземы, чем дерново-подзолистые почвы.

Подщелачивание почвы, вызываемое внесением извести или естественными карбонатами, особенно содой, увеличивает фиксацию. Фиксация калия зависит от дозы удобрения: при повышении дозы вносимых удобрений процент фиксации калия уменьшается. В целях уменьшения фиксации почвами калия удобрений рекомендуется вносить калийные удобрения на достаточную глубину, чтобы исключить пересыхание и чаще вносить их в севообороте, так как почвы, систематически удобрявшиеся калием, при новом его добавлении фиксируют его слабее. Но и фиксированный калий удобрений, находящийся в необменном состоянии, также участвует в питании растений, так как со временем он может переходить в обменно-поглощенное состояние.

Азотные удобрения по взаимодействию с почвой значительно отличаются от фосфорных и калийных. Нитратные формы азота почвой не поглощаются, поэтому они легко могут вымываться атмосферными осадками и поливными водами.

Аммиачные формы азота поглощаются почвой, но после их нитрификации приобретают свойства нитратных удобрений. Частично аммиак может поглощаться почвой необменно. Необменный, фиксированный аммоний, растениям доступен в малой степени. Кроме этого, потеря азота удобрений из почвы возможна в результате улетучивания азота в свободной форме или в виде окислов азота. При внесении азотных удобрений резко изменяется содержание нитратов в почве, так как с удобрениями поступают наиболее легко усвояемые растениями соединения. Динамика нитратов в почве в большей мере характеризует ее плодородие.

Весьма важным свойством азотных удобрений, особенно аммиачных, является их способность мобилизации почвенных запасов, что имеет большое значение в зоне черноземных почв. Под влиянием азотных удобрений органические соединения почвы быстрее подвергаются минерализации, превращаются в легкодоступные для растений формы.

Некоторое количество питательных веществ, особенно азота в виде нитратов, хлоридов и сульфатов, может проникнуть в грунтовые воды и реки. Следствием этого является превышение норм содержания этих веществ в воде колодцев, родников, что может быть вредным для людей и животных, а также ведет к нежелательному изменению гидробиоценозов и наносит ущерб рыбному хозяйству. Миграция питательных веществ из почв в грунтовые воды в разных почвенно-климатических условиях проходит неодинаково. Кроме этого, она зависит от видов, форм, доз и сроков применяемых удобрений.

В почвах Краснодарского края с периодически промывным водным режимом нитраты обнаруживаются до глубины 10 м и более и смыкаются с грунтовыми водами. Это свидетельствует о периодической глубокой миграции нитратов и включении их в биохимический круговорот, начальными звеньями которого являются почва, материнская порода, грунтовые воды. Такая миграция нитратов может наблюдаться во влажные годы, когда для почв характерен промывной водный режим. Именно в эти годы возникает опасность нитратного загрязнения окружающей среды при внесении больших доз азотных удобрений под зиму. В годы с непромывным водным режимом поступление нитратов в грунтовые воды полностью прекращается, хотя остаточные следы соединений азота наблюдаются по всему профилю материнской породы до грунтовой воды. Их сохранности способствует низкая биологическая активность этой части коры выветривания.

В почвах с непромывным водным режимом (южные черноземы, каштановые) загрязнение биосферы нитратами исключается. Они остаются замкнутыми в почвенном профиле и полностью включаются в биологический круговорот.

Вредное потенциальное влияние азота, вносимого с удобрениями, может быть сведено к минимуму путем максимального использования азота сельскохозяйствен-ными культурами. Итак, нужно заботиться, чтобы при повышении доз азотных удобрений увеличивалась эффективность использования их азота растениями; не оставалось большого количества неиспользованных растениями нитратов, которые не удерживаются почвами и могут вымываться осадками из корнеобитаемого слоя.

Растения имеют свойство накапливать в своих организмах нитраты, содержащиеся в почве в избыточных количествах. Урожайность растений растет, но продукция оказывается отравленной. Особенно интенсивно аккумулируют нитраты овощные культуры, арбузы и дыни.

В России приняты ПДК нитратов растительного происхождения (таблица 3). Допустимая суточная доза (ДСД) для человека составляет 5 мг на 1 кг веса.

Таблица 3 – Допустимые уровни содержания нитратов в продуктах

растительного происхождения, мг/кг

Продукт

Грунт

открытый

защищенный

Картофель

Капуста белокочанная

Свекла столовая

Листовые овощи (салат, шпинат, щавель, кинза, капуста салатная, петрушка, сельдерей, укроп)

Перец сладкий

Виноград столовых сортов

Продукты детского питания (овощи консервированные)

Сами нитраты не оказывают токсичного действия, но под влиянием некоторых кишечных бактерий они могут переходить в нитриты, обладающие значительной токсичностью. Нитриты, соединяясь с гемоглобином крови, переводят его в метгемоглобин, который препятствует переносу кислорода по кровеносной системе; развивается заболевание – метгемоглобинемия, особенно опасное для детей. Симптомы заболевания: полуобморочное состояние, рвота, диарея.

Изыскиваются новые пути уменьшения потерь питательных веществ и ограничения загрязнения ими окружающей среды :

Для уменьшения потерь азота из удобрений рекомендуются медленнодействующие азотные удобрения и ингибиторы нитрификации, пленки, добавки; вводится капсулирование тонкозернистых удобрений оболочками серы, пластиков. Равномерное высвобождение азота из этих удобрений исключает накопление нитратов в почве.

Большое значение для окружающей среды имеет применение новых, высококонцентрированных, комплексных минеральных удобрений. Для них характерно то, что они лишены балластных веществ (хлориды, сульфаты) или содержат их незначительное количество.

Отдельные факты отрицательного влияния удобрений на окружающую среду связаны с ошибками в практике их применения, с недостаточно обоснованными способами, сроками, нормами их внесения без учета свойств почв.

Скрытое отрицательное действие удобрений может проявляться по влиянию его на почву, растения, окружающую среду. При составлении алгоритма расчета необходимо учитывать следующие процессы:

1. Влияние на растения – уменьшение подвижности других элементов в почве. В качестве путей устранения отрицательных последствий применяется регулирование эффективной растворимости и эффективной константы ионного обмена, за счет изменения рН, ионной силы, комплексообразования; внекорневая подкормка и внесение питательных элементов в прикорневую зону; регулирование избирательности растений.

2. Ухудшение физических свойств почв. В качестве путей устранения отрицательных последствий применяются прогноз и сбалансированность системы удобрений; используются структурообразователи для улучшения структуры почвы.

3. Ухудшение водных свойств почв. В качестве путей устранения отрицательного последствия применяются прогноз и сбалансированность системы удобрений; используются компоненты, улучшающие водный режим.

4. Уменьшение поступления веществ в растения, конкуренция за поглощение корнем, токсикация, изменение заряда корня и прикорневой зоны. В качестве путей устранения отрицательных последствий применяются сбалансированность системы удобрений; внекорневая подкормка растений.

5. Проявление несбалансированности в корневых системах, нарушение циклов метаболизма.

6. Появление несбалансированности в листьях, нарушение циклов метаболизма, ухудшение технологических и вкусовых качеств.

7. Токсикация микробиологической активности. В качестве путей устранения отрицательных последствий применяются сбалансированность системы удобрений; увеличение буферности почв; внесение источников питания для микроорганизмов.

8. Токсикация ферментативной активности.

9. Токсикация животного мира почвы. В качестве путей устранения отрицательных последствий применяются сбалансированность системы удобрений; увеличение буферности почв.

10. Уменьшение адаптации к вредителям и болезням, экстремальным условиям, в связи с перекормом. В качестве мер устранения отрицательных последствий рекомендуется оптимизация соотношения элементов питания; регулирование доз удобрений; интегрированная система защиты растений; применение внекорневой подкормки.

11. Потери гумуса, изменение его фракционного состава. Для устранения отрицательных последствий применяют внесение органических удобрений, создание структуры, оптимизация рН, регулирование водного режима, сбалансированность системы удобрений.

12. Ухудшение физико-химических свойств почв. Пути устранения – оптимизация системы удобрений, внесение мелиорантов, органических удобрений.

13. Ухудшение физико-механических свойств почв.

14. Ухудшение воздушного режима почвы. Для устранения отрицательного действия необходимо оптимизировать систему удобрений, вносить мелиоранты, создавать структуру почвы.

15. Почвоутомляемость. Необходимо сбалансировать систему удобрений, строго выполнять план севооборота.

16. Появление токсичных концентраций отдельных элементов. Для снижения отрицательного влияния необходима сбалансированность системы удобрений, увеличение буферности почв, осаждение и удаление отдельных элементов, комплексообразование.

17. Увеличение концентрации отдельных элементов в растениях выше допустимого уровня. Необходимо снижение норм удобрений, сбалансированность системы удобрений, внекорневая подкормка с целью конкуренции поступлению токсикантов в растения, внесение в почву антагонистов токсикантов.

Основными причинами появления скрытого отрицательного действия удобрений в почвах являются:

Несбалансированное применение различных удобрений;

Превышение применяемых доз по сравнению с буферной емкостью отдельных компонентов экосистемы;

Направленный подбор форм удобрений для отдельных типов почв, растений и условий среды;

Неправильные сроки внесения удобрений для конкретных почв и условий среды;

Внесение вместе с удобрениями и мелиорантами различных токсикантов и их постепенное накопление в почве выше допустимого уровня.

Таким образом, применение минеральных удобрений является фундаментальным преобразованием в сфере производства вообще и главное в земледелии, что позволяет коренным образом решать проблему продовольствия и сельскохозяйственного сырья. Без применения удобрений сейчас сельское хозяйство немыслимо.

При правильной организации и контроле применения минеральные удобрения не опасны для окружающей среды, здоровья человека и животных. Оптимальные научно-обоснованные дозы увеличивают урожайность растений и повышают количество продукции.

Заключение

С каждым годом агропромышленный комплекс все больше и больше прибегает к помощи современных технологий с целью увеличить продуктивность почвы и урожайность культур, не задумываясь при этом, какое влияние оказывают они на качество того или иного продукта, здоровье человека и окружающую среду в целом. В отличие от аграриев экологи и медики всего мира ставят под сомнение чрезмерное увлечение биохимическими новинками, которые буквально оккупировали рынок сегодня. Производители удобрений друг поперек дружки расписывают преимущества собственного изобретения, ни слова не упомянув о том, что неправильное или чрезмерное внесение удобрений может иметь пагубное влияние на почву.

Специалисты давно установили, что избыток удобрений приводит к нарушению экологического равновесия в биоценозах почв. Химические и минеральные удобрения, особенно нитраты и фосфаты, ухудшают качество пищевых продуктов, а также существенно влияют и на здоровье человека, и на стабильность агроценозов. Особое опасение у экологов вызывает то, что в процессе загрязнения почвы нарушаются биогеохимические циклы, что в последствие приводит к обострению общей экологической обстановки.

Список использованной литературы

1. Акимова Т. А., Хаскин В. В. Экология. Человек – Экономика – Биота – Среда. – М., 2001

2. Вальков В. Ф., Штомпель Ю. А., Тюльпанов В. И. Почвоведение (почвы Северного Кавказа). – Краснодар, 2002.

3. Голубев Г. Н. Геоэкология. – М, 1999.

Минеральные удобрения: польза и вред

Да, урожай от них растёт,

Но губится природа.

Нитратов кушает народ

Всё больше год от года.

Мировое производство минеральных удобрений стремительно растёт. Каждое десятилетие оно увеличивается примерно в 2 раза. Урожайность культур от их применения, конечно, растёт, но у этой проблемы много негативных сторон, и это беспокоит очень многих людей. Не зря в некоторых странах Запада правительство поддерживает овощеводов, выращивающих продукцию без применения минеральных удобрений - экологически чистую.

МИГРАЦИЯ АЗОТА И ФОСФОРА ИЗ ПОЧВЫ

Доказано, что из внесённого в почву азота растения усваивают около 40%, остальной азот вымывается из почвы дождём и улетучивается в виде газа. В меньшей степени, но вымывается из почвы и фосфор. Накопление азота и фосфора в грунтовых водах ведёт к загрязнению водоёмов, они быстро стареют и превращаются в болота, т.к. повышенное содержание удобрений в воде влечет за собой быстрый рост растительности. Отмирающий планктон и водоросли осаждаются на дно водоёмов, это ведёт к выделению метана, сероводорода и к сокращению запасов растворимого в воде кислорода, что является причиной замора рыбы. Сокращается и видовой состав ценных рыб. Рыба не стала вырастать до нормальных размеров, она раньше начала стареть, раньше погибать. Планктон в водоёмах накапливает нитраты, рыбы им питаются, и употребление в пищу таких рыб может привести к заболеваниям желудка. А накопление азота в атмосфере ведет к выпадению кислых дождей, подкисляющих почву и воду, разрушающих строительные материалы, окисляющих металлы. От всего этого страдают леса и обитающие в них животные и птицы, а в водоёмах гибнут рыбы, моллюски. Есть сообщение, что на некоторых плантациях, где добывают мидии (это съедобные моллюски, они раньше очень ценились), они стали несъедобными, больше того, случались случаи отравления ими.

ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА СВОЙСТВА ПОЧВЫ

Наблюдения показывают, что содержание гумуса в почвах постоянно уменьшается. Плодородные почвы, черноземы в начале века содержали до 8% гумуса. Сейчас таких почв почти не осталось. Подзолистые и дерновo-подзолистые почвы содержат 0,5-3% гумуса, серые лесные - 2-6%, луговые чернозёмы - больше 6%. Гумус служит хранилищем основных элементов питания растений, это коллоидное вещество, частички которого удерживают на своей поверхности элементы питания в доступной для растений форме. Образуется гумус при разложении микроорганизмами остатков растительного происхождения. Гумус не заменить никакими минеральными удобрениями, напротив, они ведут к активной минерализации гумуса, структура почвы ухудшается, из коллоидных комочков, удерживающих воду, воздух, питательные элементы, почва превращается в пылеобразное вещество. Из естественной почва превращается в искусственную. Минеральные удобрения провоцируют вымывание из почвы кальция, магния, цинка, меди, марганца и т.д., это влияет на процессы фотосинтеза, снижает устойчивость растений к заболеваниям. Применение минеральных удобрений ведёт к уплотнению почвы, снижению её пористости, к уменьшению доли зернистых агрегатов. Кроме того, подкисление почвы, неизбежно происходящее при внесении минеральных удобрений, требует всё большего внесения извести. В 1986 году в нашей стране было внесено в почву 45,5 млн. т извести, однако это не компенсировало потери кальция и магния.

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЁЛЫМИ МЕТАЛЛАМИ И ТОКСИЧЕСКИМИ ЭЛЕМЕНТАМИ

Сырьё, используемое для производства минеральных удобрений, содержит стронций, уран, цинк, свинец, кадмий и пр., извлечь которые технологически сложно. Как примеси эти элементы входят в суперфосфаты, в калийные удобрения. Наиболее опасны тяжёлые металлы: ртуть, свинец, кадмий. Последний разрушает эритроциты в крови, нарушает работу почек, кишечника, размягчает ткани. Здоровый человек весом 70 кг без вреда здоровью может получать с пищей за неделю до 3,5 мг свинца, 0,6 мг кадмия, 0,35 мг ртути. Однако на сильно удобренных почвах растения могут накопить и большие концентрации этих металлов. Например, в молоке коров может быть до 17-30 мг кадмия в 1 литре. Присутствие в фосфорных удобрениях урана, радия, тория увеличивает уровень внутреннего облучения человека и животных при попадании растительной пищи в их организм. В состав суперфосфата входит также фтор в количестве 1-5%, и его концентрация может достигать 77,5 мг/кг, вызывая различные болезни.

МИНЕРАЛЬНЫЕ УДОБРЕНИЯ И ЖИВОЙ МИР ПОЧВЫ

Применение минеральных удобрений вызывает изменение видового состава микроорганизмов почвы. Сильно увеличивается численность бактерий, способных усваивать минеральные формы азота, но уменьшается число симбионтных микрогрибов в ризосфере растений (ризосфера - это 2-3-милиметровая область почвы, прилегающая к корневой системе). Уменьшается также число азотфиксирующих бактерий в почве - в них как бы отпадает необходимость. В результате этого корневая система растений уменьшает выделение органических соединений, а их объём составлял около половины массы надземной части, и фотосинтез растений снижается. Активизируются токсинообразующие микрогрибы, численность которых в естественных условиях контролируется полезными микроорганизмами. Внесение извести не спасает положение, а приводит иногда к увеличению заражённости почвы возбудителями корневой гнили.

Минеральные удобрения вызывают сильную депрессию почвенных животных: ногохвосток, круглых червей и фитофагов (они питаются растениями), а также снижение ферментативной активности почвы. А она формируется деятельностью всех почвенных растений и живых существ почвы, при этом ферменты попадают в почву в результате их выделения живыми организмами, отмирающими микроорганизмами, Установлено, что применение минеральных удобрений снижает активность почвенных ферментов более чем в два раза.

ПРОБЛЕМЫ ЗДОРОВЬЯ ЧЕЛОВЕКА

В организме человека нитраты, поступающие в пищу, всасываются в пищеварительный тракт, попадают в кровь, а с ней - в ткани. Около 65% нитратов превращаются в нитриты уже в полости рта. Нитриты окисляют гемоглобин до метагемоглобина, имеющую тёмную коричневую окраску; он не способен переносить кислород. Норма метагемоглобина в организме - 2%, а большее его количество вызывает различные заболевания. При 40% метагемоглобина в крови человек может умереть. У детей ферментативная система слабо развита, и поэтому нитраты для них более опасны. Нитраты и нитриты в организме превращаются в нитрозосоединения, являющиеся канцерогенами. В опытах на 22 видах животных было доказано, что эти нитрозосоединения обуславливают образование опухолей на всех органах, кроме костей. Нитрозоамины, обладая гепатотоксическими свойствами, вызывают также заболевание печени, в частности гепатит. Нитриты ведут к хронической интоксикации организма, ослабляют иммунную систему, снижают умственную и физическую работоспособность, проявляют мутагенные и эмбринотоксические свойства.

В питьевой воде содержание нитратов постоянно увеличивается. Сейчас их должно быть не более 10 мг/л (требования ГОСТ).

Для овощей установлены предельные нормы содержания нитратов в мг/кг. Эти нормы постоянно корректируются в сторону увеличения. Уровень предельно допустимой концентрации нитратов, принятый сейчас в России, и оптимальная кислотность почвы для некоторых овощей даны в таблице (см. ниже).

Реальное содержание нитратов в овощах, как правило, превышает норму. Максимальная суточная доза нитратов, не оказывающая отрицательного влияния на организм человека, - 200-220 мг на 1 кг массы тела. Как правило, реально в организм поступают 150-300 мг, а иногда до 500 мг на 1 кг массы тела.

КАЧЕСТВО ПРОДУКТОВ

Повышая урожайность культур, минеральные удобрения влияют на их качество. В растениях уменьшается содержание углеводов и увеличивается количество сырого протеина. В картофеле уменьшается содержание крахмала, а в зерновых культурах изменяется аминокислотный состав, т.е. питательность белка снижается.

Применение минеральных удобрений при выращивании сельскохозяйственных культур влияет также на хранение продуктов. Снижение сахара и сухого вещества в свекле и других овощах ведёт к ухудшению их лёжкости при хранении. У картофеля сильнее темнеет мякоть, при консервировании овощей нитраты вызывают коррозию металла банок. Известно, что нитратов больше в жилках листьев у салатов, шпинатов, в сердцевине моркови сосредотачивается до 90% нитратов, в верхней части свёклы - до 65%, их количество увеличивается при хранении сока и овощей при высокой температуре. Овощи с грядки лучше убирать зрелыми и во второй половине дня - тогда в них меньше нитратов. Откуда берутся нитраты, и когда эта проблема возникла? Нитраты в продуктах были всегда, просто их количество в последнее время растёт. Растение питается, берёт из почвы азот, азот накапливается в тканях растения, это явление нормальное. Другое дело, когда этого азота в тканях имеется избыточное количество. Нитраты сами по себе не опасны. Часть из них выводится из организма, другая часть преобразуется в безвредное и даже полезные соединения. А избыточная часть нитратов превращается в соли азотистой кислоты - это и есть нитриты. Они и лишают красные кровяные тельца возможности питать кислородом клетки нашего организма. В результате нарушается обмен веществ, страдает ЦНС - центральная нервная система, снижается противодействие организма болезням. Среди овощей чемпион по накоплению нитратов - свёкла. Меньше их в капусте, петрушке, луке. Нет нитратов в спелых помидорах. Нет их в красной и чёрной смородине.

Для меньшего потребления нитратов нужно у овощей убирать части, в которых нитратов больше. У капусты это кочерыжки, у огурца, редиса нитраты накапливаются в корешке. У патиссона это верхняя часть, примыкающая к плодоножке, у кабачка - кожица, хвостик. Незрелая мякоть арбуза и дыни, прилегающая к коркам, богата нитратами. С салатами нужно обращаться очень осторожно. Употреблять их нужно сразу после изготовления, а заправлять - подсолнечным маслом. В сметане и майонезе быстро размножается микрофлора, которая превращает нитраты в нитриты. Особенно способствует этому смена температур, когда мы несъеденные салаты или невыпитые соки ставим в холодильник и достаем их оттуда несколько раз. При приготовлении супа овощи нужно хорошо вымыть, почистить, удалить наиболее опасные места, один час нужно подержать их в воде, добавив в неё поваренную соль, 1% раствор. Хорошо снижает содержание нитратов в пище тушение овощей, жарка картофеля во фритюре. А после еды для компенсации нитратов нужно пить зелёный чай, а детям нужно дать аскорбинку. И, заканчивая разговор о нитратах, пожелаем всем здоровья!

Культура

Уровень

предельно

допустимой

Концентрации

Нитратов, мг/кг

Оптимальная

кислотность

почвы, pH

Томат

300

5,0-7,0

Картофель

250

5,0-7,0

Капуста

900

6,0-7,5

Кабачок

400

5,5-7,5

Свекла

1400

6,5-7,5

Огурец

400

6,5-7,5

Морковь

250

6,0-8,0

Банан

200

Дыня

5,5-7,5

Арбуз

5,5-7,5

Н. Нилов