Что такое импульс в физике определение формула. Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Обои

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

Инструкция

Найдите массу движущегося тела и измерьте его движения. После его взаимодействия с другим телом, у исследуемого тела изменится скорость. В этом случае от конечной (после взаимодействия) отнимите начальную скорость и умножьте разность на массу тела Δp=m∙(v2-v1). Мгновенную скорость измерьте радаром, массу тела - весами. Если после взаимодействия тело начало двигаться в сторону, противоположную той, кода двигалось до взаимодействия, то конечная скорость будет отрицательной. Если положительное – он вырос, если отрицательное – уменьшился.

Поскольку причиной изменения скорости любого тела является сила, то она же и является причиной изменения импульса. Чтобы рассчитать изменение импульса любого тела, достаточно найти импульс силы, действовавшей на данное тело в некоторого времени. С помощью динамометра измерьте силу, которая заставляет тело изменять скорость, придавая ему ускорение. Одновременно с помощью секундомера измерьте время, которое эта сила действовала на тело. Если сила заставляет тело двигаться , то считайте ее положительной, если же тормозит его движение – считайте ее отрицательной. Импульс силы, равный изменению импульса будет произведению силы на время ее действия Δp=F∙Δt.

Определение мгновенной скорости спидометром или радаром Если движущееся тело оборудовано спидометром (), то на его шкале или электронном табло будет непрерывно отображаться мгновенная скорость в данный момент времени. При наблюдении за телом с неподвижной точки (), направьте на него сигнал радара, на его табло отобразится мгновенная скорость тела в данный момент времени.

Видео по теме

Сила – это физическая величина, действующая на тело, которая, в частности, сообщает ему некоторое ускорение. Чтобы найти импульс силы , нужно определить изменение количества движения, т.е. импульс а самого тела.

Инструкция

Движение материальной точки воздействием некоторой силы или сил, которые придают ей ускорение. Результатом приложения силы определенной величины в течение некоторого является соответствующее количество . Импульсом силы называется мера ее действия за определенный промежуток времени:Pс = Fср ∆t, гдеFср – средняя сила, действующая на тело;∆t – временной интервал.

Таким образом, импульс силы равен изменению импульс а тела:Pc = ∆Pт = m (v – v0), гдеv0 – начальная скорость;v – конечная скорость тела.

Полученное равенство отображает второй закон Ньютона применительно к инерциальной системе отсчета: производная функции материальной точки по времени равна величине постоянной силе, действующей на нее:Fср ∆t = ∆Pт → Fср = dPт/dt.

Суммарный импульс системы нескольких тел может измениться только под воздействием внешних сил, причем его значение прямо пропорционально их сумме. Это утверждение является следствием второго и третьего законов Ньютона. Пусть из трех взаимодействующих тел, тогда верно:Pс1 + Pc2 + Pc3 = ∆Pт1 + ∆Pт2 + ∆Pт3, гдеPci – импульс силы , действующей на тело i;Pтi – импульс тела i.

Это равенство показывает, что если сумма внешних сил нулевая, то общий импульс замкнутой системы тел всегда постоянен, несмотря на то, что внутренние силы

Если на тело массой m за определенный промежуток времени Δ t действует сила F → , тогда следует изменение скорости тела ∆ v → = v 2 → - v 1 → . Получаем, что за время Δ t тело продолжает движение с ускорением:

a → = ∆ v → ∆ t = v 2 → - v 1 → ∆ t .

Основываясь на основном законе динамики, то есть втором законе Ньютона, имеем:

F → = m a → = m v 2 → - v 1 → ∆ t или F → ∆ t = m v 2 → - m v 1 → = m ∆ v → = ∆ m v → .

Определение 1

Импульс тела , или количество движения – это физическая величина, равная произведению массы тела на скорость его движения.

Импульс тела считается векторной величиной, которая измеряется в килограмм-метр в секунду (к г м / с) .

Определение 2

Импульс силы – это физическая величина, равняющаяся произведению силы на время ее действия.

Импульс относят к векторным величинам. Существует еще одна формулировка определения.

Определение 3

Изменение импульса тела равняется импульсу силы.

При обозначении импульса p → второй закон Ньютона записывается как:

F → ∆ t = ∆ p → .

Данный вид позволяет формулировать второй закон Ньютона. Сила F → является равнодействующей всех сил, действующих на тело. Равенство записывается как проекции на координатные оси вида:

F x Δ t = Δ p x ; F y Δ t = Δ p y ; F z Δ t = Δ p z .

Рисунок 1 . 16 . 1 . Модель импульса тела.

Изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось.

Определение 4

Одномерное движение – это движение тела по одной из координатный осей.

Пример 1

На примере рассмотрим свободное падение тела с начальной скоростью v 0 под действием силы тяжести за промежуток времени t . При направлении оси O Y вертикально вниз импульс силы тяжести F т = mg , действующий за время t , равняется m g t . Такой импульс равняется изменению импульса тела:

F т t = m g t = Δ p = m (v – v 0) , откуда v = v 0 + g t .

Запись совпадает с кинематической формулой определения скорости равноускоренного движения. По модулю сила не изменяется из всего интервала t . Когда она изменяема по величине, тогда формула импульса требует подстановки среднего значения силы F с р из временного промежутка t . Рисунок 1 . 16 . 2 показывает, каким образом определяется импульс силы, которая зависит от времени.

Рисунок 1 . 16 . 2 . Вычисление импульса силы по графику зависимости F (t)

Необходимо выбрать на временной оси интервал Δ t , видно, что сила F (t) практически неизменна. Импульс силы F (t) Δ t за промежуток времени Δ t будет равняться площади заштрихованной фигуры. При разделении временной оси на интервалы на Δ t i на промежутке от от 0 до t , сложить импульсы всех действующих сил из этих промежутков Δ t i , тогда суммарный импульс силы будет равняться площади образования при помощи ступенчатой и временной осей.

Применив предел (Δ t i → 0) , можно найти площадь, которая будет ограничиваться графиком F (t) и осью t . Использование определения импульса силы по графику применимо с любыми законами, где имеются изменяющиеся силы и время. Данное решение ведет к интегрированию функции F (t) из интервала [ 0 ; t ] .

Рисунок 1 . 16 . 2 показывает импульс силы, находящийся на интервале от t 1 = 0 с до t 2 = 10 .

Из формулы получим, что F с р (t 2 - t 1) = 1 2 F m a x (t 2 - t 1) = 100 Н · с = 100 к г · м / с.

То есть, из примера видно F с р = 1 2 F m a x = 10 Н.

Имеются случаи, когда определение средней силы F с р возможно при известных времени и данных о сообщенном импульсе. При сильной ударе по мячу с массой 0 , 415 к г можно сообщить скорость, равную v = 30 м / с. Приблизительным временем удара является значение 8 · 10 – 3 с.

Тогда формула импульса приобретает вид:

p = m v = 12 , 5 к г · м / с.

Чтобы определить среднюю силу F с р во время удара, необходимо F с р = p ∆ t = 1 , 56 · 10 3 Н.

Получили очень большое значение, которое равняется телу массой 160 к г.

Когда движение происходит по криволинейной траектории, то начальное значение p 1 → и конечное
p 2 → могут быть различны по модулю и по направлению. Для определения импульса ∆ p → применяют диаграмму импульсов, где имеются векторы p 1 → и p 2 → , а ∆ p → = p 2 → - p 1 → построен по правилу параллелограмма.

Пример 2

Для примера приводится рисунок 1 . 16 . 2 , где нарисована схема импульсов мяча, отскакивающего от стены. При подаче мяч с массой m со скоростью v 1 → налетает на поверхность под углом α к нормали и отскакивает со скоростью v 2 → с углом β . При ударе в стену мяч подвергался действию силы F → , направленной также, как и вектор ∆ p → .

Рисунок 1 . 16 . 3 . Отскакивание мяча от шероховатой стенки и диаграмма импульсов.

Если происходит нормальное падение мяча с массой m на упругую поверхность со скоростью v 1 → = v → , тогда при отскоке она изменится на v 2 → = - v → . Значит, за определенный промежуток времени импульс изменится и будет равен ∆ p → = - 2 m v → . Используя проекции на О Х, результат запишется как Δ p x = – 2 m v x . Из рисунка 1 . 16 . 3 видно, что ось О Х направлена от стенки, тогда следует v x < 0 и Δ p x > 0 . Из формулы получим, что модуль Δ p связан с модулем скорости, который принимает вид Δ p = 2 m v .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Произведение массы тела на его скорость называют импульсом или мерой движения тела. Он относится к векторным величинам. Его направление сонаправлено вектору скорости тела.

Единица измерения в СИ:

Вспомним второй закон механики:

Для ускорения верно соотношение:

,
Где v0 и v - скорости тела в начале и конце некоторого временного отрезка Δt.
Перепишем второй закон следующим образом:

Можно увидеть, что - импульс тела в начале некоторого отрезка времени, а - импульс тела в конечный момент времени.
- альтернативная математическая запись второго закона Ньютона.
Выполним преобразование:

Величину называют импульсом силы.
А формула, которую получили, показывает, что изменение импульса тела равно по величине импульсу действующей на него силы.
Эта формула особенно интересна тем, что ей можно воспользоваться в случае, когда масса движущегося под действием силы F тела меняется в процессе движения. Примером может служить реактивное движение.

Закон сохранения импульса

В физике часто встречаются ситуации, в которых одновременно рассматривается движение взаимодействующих между собой тел, называемых системой тел.
Системой тел можно назвать солнечную систему, соударяющиеся шары, молекулы тела или система «ружьё и пуля». Те тела, которые не участвуют во взаимодействии с телами системы, называются внешними по отношению к этой системе, а силы, с которыми они действуют на систему - внешними силами.

Изолированная система тел

Если на систему не действуют внешние силы или их действие скомпенсировано, то её называют изолированной или замкнутой.
Если рассматривать движения тел в замкнутой системе, то следует учитывать силы, с которыми эти тела взаимодействуют между собой.
Если рассмотреть простейшую изолированную систему, состоящую из двух тел, массы которых m1 и m2. Тела движутся по одной прямой и их скорости совпадают по направлению, причём v1 > v2. Когда первое тело догонит второе, они начнут взаимодействовать посредством сил упругости, их скорости будут меняться, и тела начнут двигаться со скоростями. Запишем их взаимодействие с помощью третьего закона Ньютона и получим следующее соотношение:

или
.

Векторные суммы импульсов двух тел до и после удара равны между собой.
Полезной аналогией для понимания закона сохранения импульса является денежная сделка между двумя людьми. Предположим, что у двух людей до сделки была определённая сумма. У Ивана было 1000 рублей и Петр тоже обладал 1000 рублей. Общая сумма в их карманах составляет 2000 рублей. Во время сделки Иван платит Петру 500 рублей, осуществляется передача денег. У Петра в кармане теперь 1500 руб., а у Ивана - 500. Но общая сумма в их карманах не изменилась и также составляет 2000 рублей.
Полученное выражение справедливо для любого количества тел, принадлежащих изолированной системе, и является математической формулировкой закона сохранения импульса.
Суммарный импульс N-ного количества тел, образующих изолированную систему, не меняется с течением времени.
Когда система тел подвергается воздействию нескомпенсированных внешних сил (система незамкнутая), то суммарный импульс тел этой системы изменяется с течением времени. Но справедливым остаётся закон сохранения для суммы проекций импульсов этих тел на любое направление, перпендикулярное направлению результирующей внешней силы.

Движение ракеты

Движение, которое возникает при отделении от тела его части определённой массы с некоторой скоростью, называют реактивным.
Примером реактивного движения может служить движение ракеты, находящейся на значительном удалении от Солнца и планет. В этом случае ракета не испытывает гравитационного воздействия и может считаться изолированной системой.
Ракета состоит из оболочки и топлива. Они и являются взаимодействующими телами изолированной системы. В начальный момент времени скорость ракеты равна нулю. В этот момент равен нулю и импульс системы, и оболочки, и топлива. Если включить двигатель, то топливо ракеты сгорает и превращается в высокотемпературный газ, покидающий двигатель под высоким давлением и с большой скоростью.
Обозначим массу образующегося газа mг. Будем считать, что он вылетает из сопла ракеты моментально со скоростью vг. Массу и скорость оболочки обозначим соответственно mоб и vоб.
Закон сохранения импульса даёт право записать соотношение:


.Из этого равенства можем получить скорость движения оболочки:

Знак «минус» указывает на то, что скорость оболочки направлена в противоположную сторону от выбрасываемого газа.
Скорость оболочки пропорциональна скорости выброса газа и массе газа. И обратно пропорциональна массе оболочки.
Принцип реактивного движения позволяет рассчитывать перемещение ракет, самолётов и других тел в условиях, когда на них действуют внешние сила тяжести или сила сопротивления атмосферы. Конечно, в этом случае уравнение даёт завышенное значение скорости оболочки vоб. В реальных условиях и газ вытекает из ракеты не мгновенно, что влияет на итоговое значение vоб.
Действующие формулы, описывающее движение тела с реактивным двигателем получены русскими учёными И.В. Мещерским и К.Э. Циолковским.