Оздоровление воздушной среды. Очистка воздуха от пыли. Очистка воздуха от абразивной пыли, металлической стружки Очистка воздуха на предприятиях

Наклеивание

Трудности очистки воздуха на производстве

Очистка воздуха на производстве является весьма сложной задачей, поскольку предполагает устранение из него сразу всех известных типов загрязняющих веществ. Загрязняющие вещества подразделяются на следующие типы:

  • Газы;
  • Аэрозоли (механические частицы, взвешенные в воздухе);
  • Органические соединения.

Нужно удалить их все, доведя воздух до требуемых санитарных и технологических норм. Это связано с необходимостью применения комплексных систем механической, физической и химической очистки.

При очистке воздуха на производстве наибольшую сложность представляет удаление и нейтрализация органических соединений. Под органическими соединениями принято понимать микроорганизмы и продукты их жизнедеятельности, представляющие собой сложные биохимические молекулярные структуры, рассеянные в воздухе в виде сгустков различной дисперсности.

Удаление газов и аэрозолей тоже связано с немалыми трудностями, особенно, если учесть, что мы говорим об очистке воздуха на производстве, а значит масштабы загрязнения очень велики. Затраты на оборудование сопоставимы с его размерами. А ведь ему требуется еще и обслуживание, которое отличается значительной сложностью, и потому неизбежно влечет к новым, стабильно высоким тратам!

Очистка воздуха на производстве с использованием передовых технологий

Решить вопрос очистки воздуха на производстве трудно еще и потому, что каждое предприятие имеет уникальный состав загрязнения, а значит, универсальных решений тут быть не может. Так думали еще совсем недавно, пока в продаже не появились первые установки «PlazmaiR Industry», способные очищать воздух от всех трех разновидностей загрязняющих веществ, устраняя их одинаково эффективно.

Упомянутая технология очистки воздуха на производстве стала настоящим открытием, причем не только в России, но и на Западе, где к вопросам устранения вредных производственных факторов подходят с традиционно высокой ответственностью. На данный момент установки «PlazmaiR» не имеют аналогов за рубежом, поэтому их просто не с чем сравнить.

Здесь нужно добавить, что принцип работы этих установок, не ориентирован исключительно для очистки воздуха на производстве, поэтому область их применения не ограничена только промышленностью. Установки «PlazmaiR» могут применяться в жилых и общественных зданиях, например, ресторанах или супермаркетах, добиваясь ничуть не меньшего результата!

Очистка воздуха на производстве установками «PlazmaiR Industry»

Высокая эффективность установок «PlazmaiR Industry», применяемых для очистки воздуха на производстве, обусловлена комплексным подходом к задаче. Конструкционно установки «PlazmaiR» состоят из трех блоков, каждый из которых устраняет загрязняющие вещества определенного типа:

  • Блок механической фильтрации (предварительная очистка);
  • Блок физического разложения (плазменная очистка);
  • Блок нормализации газового состава воздуха (каталитическая очистка).

Для очистки воздуха на производстве, связанном с высокой влажностью в технологических помещениях, необходимо использовать установки «PlazmaiR» с дополнительно установленными модулями осушения. Если воздух в технологических помещениях насыщен парами агрессивных веществ, нужны установки, изготовленные из высокостойких материалов.

Все установки «PlazmaiR Industry», используемые для очистки воздуха на производстве, производятся компанией «Перспектива» на территории России, без привлечения подрядчиков. Выпускаемое ею оборудование адаптировано к эксплуатации в условиях нашей страны, а его обслуживание обходится значительно дешевле, нежели обслуживание прочих промышленных систем очистки воздуха.

Эффективность очистки от пыли на производстве

Эффективность очистки от пыли повышают путем последовательной установки пылеуловителей разного типа, например, сначала для улавливания грубой фракции пыли устанавливают циклон, а за ним матерчатый фильтр.


Большое распространение в последние годы получили мокрые пылеуловители. Один из наиболее распространенных аппаратов этого вида — ротоциклон, в котором газопылевая смесь под давлением, создаваемым вентилятором, вихревым потоком проходит через слой воды. Тяжелые частицы пыли задерживаются водой и осаждаются в нижнюю часть ротоциклона, откуда затем удаляются, а очищенный поток уходит в атмосферу. К аппаратам, в которых пыль улавливается с помощью воды, относятся скрубберы, промывные башни, пенные аппараты, пылеуловители Вентури, в том числе в компоновке с циклоном, и др.


Разновидностью мокрых пылеуловителей являются конденсационные установки, удаляющие пыль из потока газа, насыщенного водой. Принцип их действия основан на быстром снижении давления газа, приводящем к испарению воды. Вследствие этого часть водяного пара конденсируется на витающих пылинках, а последние, смачиваясь и утяжеляясь, могут быть легко отделены от газа в каком-либо простейшем устройстве, например циклоне.


Более эффективное улавливание пыли достигается в электрическом фильтре (сухой способ). Такие фильтры устанавливаются, например, в котельных для очистки дымовых газов от сажи, летучей золы — уноса. К коронирующим и осадительным электродам фильтров подводят постоянный ток высокого напряжения. Осадительные электроды присоединяют к положительному полюсу выпрямителей и заземляют, а коронирующие изолируют от земли и присоединяют к отрицательному полюсу.


Очищаемый поток газов проходит через пространство между электродами и основная масса взвешенных частиц, заряжающихся под действием коронного разряда (сопровождается голубоватым свечением и потрескиванием), оседает на осадительных электродах. Путем встряхивания пыль удаляется в бункер, жидкая фаза загрязнений стекает.


Полное удаление пыли из загрязненного потока воздуха происходит в бумажных (сухих) фильтрах-поглотителях конструкции академика Петракова, изготовляемых из особого мягкого листового материала типа бумаги. Эти фильтры устанавливают в респираторы для улавливания радиоактивной пыли при работе в зонах с повышенной радиацией. После использования они, как и радиоактивные смывы грунта, подлежат захоронению.

1 — загрязненный поток, 2 — осадительный (цилиндрический) электрод, 3 — коронирующий электрод 4 — очищенный поток, 5 — взвесь, +U, —U — электрический потенциал соответственно положительного и отрицательного зарядов


Для очистки технологических и вентиляционных выбросов от вредных газов применяют адсорберы и абсорберы. В адсорбере очищаемый поток пронизывает слой адсорбента, состоящего из зернистого вещества с развитой поверхностью, например, активированного угля, силикагеля, окиси алюминия, пиролюзита и т.п. При этом вредные вещества (газы и пары) связываются адсорбентом и впоследствии могут быть выделены из него. Имеются адсорберы с неподвижным слоем адсорбента, который обновляется после насыщения улавливаемым веществом, а также адсорберы непрерывного действия, в которых адсорбент медленно перемещается и одновременно очищает проходящий через него поток.

1 — сетка, 2 — адсорбент, 3 — счищенный поток, 4 — загрязненный поток


1 — адсорбент, 2 — очищаемый поток, 3 — насадка, 4 — сетка, 5 — загрязненный поток, 6 — выброс в канализацию


Промышленность выпускает также адсорберы с псевдоожиженным (кипящим) слоем, в которых очищаемый поток подается снизу вверх с большой скоростью и поддерживает слой адсорбента во взвешенном состоянии. Площадь соприкосновения очищаемого потока с поверхностью адсорбента при этом значительно увеличивается, но могут произойти истирание адсорбента и запыление очищаемого потока, поэтому за адсорбентом в ряде случаев приходится устанавливать пылевой фильтр.


В абсорбере для очистки от газов применяют, как правило, жидкие вещества, например воду или растворы солей (абсорбенты), поглощающие вредные газы и пары. При этом одни вредные вещества растворяются абсорбентом, другие — вступают с ним в реакцию. Конструкции абсорберов весьма разнообразны. В качестве абсорберов могут применяться распылительные камеры кондиционеров, в которых вместо воды разбрызгивается поглощающий примеси раствор, а также уже упоминавшиеся барботеры, ротоциклоны, пенные аппараты, пылеуловители Вентури и другое оборудование очистки от пыли мокрым способом.


Распространенным способом очистки газов и органических соединений от газообразных вредных веществ, в том числе обладающих неприятном запахом, является дожигание, возможное в тех случаях, когда вредные вещества способны к окислению. Если концентрация примесей в газах постоянна и превышает пределы воспламенения, применяют наиболее простое устройстве — дожигающие газовые горелки. При низких концентрациях вредных веществ, не достигающих предела воспламенения, используют каталитическое окисление. В присутствии катализатора (какого-либо металла или его соединений, например, платины) происходит экзотермическое окисление органических соединений при температурах значительно ниже предела воспламенения.


Для дезодорации неприятно пахнущих веществ применяют озонирование — метод, основанный на окислительном разложении образующих неприятный запах веществ и нейтрализации запаха (применяется, например, на предприятиях мясной промышленности).


Далеко не все предприятия работают по безотходной технологии и не для всех выбросов разработаны системы очистки. Поэтому применяются выбросы загрязняющих веществ на большую высоту. При этом вредные вещества, достигая приземного пространства, рассеиваются и их концентрация снижается до предельно допустимых значений. Некоторые вредные вещества на большой высоте переходят в иное состояние (конденсируются, вступают в реакции с другими веществами и т.д.), а такие, как ртуть, осаждаются на поверхности земли, листьев, строениях и при повышении температуры снова испаряются в воздухе.


Отведение загрязняющих веществ на большую высоту осуществляется, как правило, с помощью труб, которые в отдельных случаях достигают высоты более 350 м.


Расчет рассеивания производят по нормативному документу ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». На основе этой методики разработаны компьютерные программы, успешно применяемые в промышленности.


Расчет рассеивания осуществляется только для организованных выбросов. В результате расчета определяется максимальная приземная концентрация вредных веществ выброса (мг/м3) в интересующей проектировщика точке (точках), которая должна быть не более ПДК с учетом фоновой концентрации, образуемой другими выбросами.


Для отведения выбросов на большую высоту используют не только высокие трубы, но и так называемые факельные выбросы, представляющие собой конические насадки на выхлопном отверстии, через которые загрязненные газы выбрасываются вентилятором с большой скоростью (20—30 м/с). Применение факельных выбросов уменьшает единовременные затраты, но вызывает большой расход электроэнергии при эксплуатации.


Отведение вредных веществ на большую высоту с помощью высоких труб и факельных выбросов не уменьшает загрязнения окружающей среды (воздуха, почв, гидросферы), а приводит лишь к их рассеиванию. При этом концентрация вредных веществ в воздушной среде недалеко от места их выброса может оказаться меньше, чем на большом расстоянии.


Для уменьшения концентрации вредных веществ на прилегающей к промышленному предприятию территории устраивают санитарно-защитные зоны.


Они предназначены также для защиты селитебных территорий от запахов сильно пахнущих веществ, повышенных уровней шума, вибрации, ультразвука, электромагнитных волн, радиочастот, статического электричества и ионизирующих излучений, источниками которых могут быть промышленные предприятия.


Санитарно-защитная зона начинается непосредственно от источника выделения вредных веществ: трубы, шахты и т.д. Для установления размеров санитарно-защитных зон в зависимости от характера и масштабов производственных вредностей введена санитарная классификация промышленных предприятий:

  1. предприятия I класса имеют санитарно-защитную зону 1000 м (клееварочные заводы, производство технического желатина, утильзаводы по переработке падали животных, рыб и т.д.);
  2. II класса — 500м (костемельные заводы, бойни, мясокомбинаты и т.д.);
  3. III класса — 300 м (производство кормовых дрожжей, предприятия свеклосахарные, рыбные промыслы и т.д.);
  4. IV класса — 100 м (солеваренное и солеразмольное производство, производство парфюмерии, производство изделий из синтетических смол, полимерных материалов и т.д.);
  5. V класса — 50 м (механическая обработка изделий из пластмасс и синтетических смол, производство столового уксуса, заводы спиртоводочные, предприятия табачно-махорочные, хлебозаводы, макаронные фабрики, молочное производство и многие другие предприятия).

Территорию санитарно-защитной зоны озеленяют и благоустраивают. На ней могут быть размешены отдельные сооружения, предприятия меньшего класса вредности, а также вспомогательные здания (пожарные депо, бани, прачечные и т.п.). Возможность использования земель, отводимых под санитарно-защитные зоны, для сельскохозяйственного производства зависит от количества и характера загрязнений, которые на них попадают.


Для улучшения состояния воздушной среды на селитебной территории большое значение имеет взаимное расположение промышленной площадки и селитебной территории, учитывающее климатические условия, в частности преобладающее направление ветров. Промышленные предприятия и селитебные территории следует располагать на хорошо проветриваемом месте, причем таким образом, чтобы при господствующем ветре выделяющиеся вредные вещества не заносились на селитебную территорию.


Для предприятий атомной промышленности и ядерной энергетики и для соответствующих объектов в составе промышленного предприятия санитарно-защитная зона устанавливается специальными нормативными актами.


Для очистки наружного воздуха, подаваемого приточной вентиляцией в производственные помещения (концентрация вредных веществ в нем не должна превышать 0,3 ПДК для внутреннего воздуха рабочей зоны) в приточных вентиляционных камерах устанавливают фильтры. Применяют масляные фильтры, фильтры из нетканого волокна и другие виды устройств, очищающих поступающий воздух от пыли и газов.


Контроль концентраций вредных примесей воздушной среды сводится к следующим операциям: отбор проб воздуха, подготовка проб к анализу, анализ и обработка результатов.


Самым простым и распространенным способом накопления (отбора) газовой или пылевой пробы является протягивание воздуха воздуходувными устройствами (аспиратор, эффектор, насос) с определенной скоростью, регистрируемой расходомерным устройством (реометр, ротаметр, газовые часы), через накопительные элементы, обладающие необходимой поглотительной способностью.


Для экспрессного метода определения характеристик токсичных веществ используют универсальные газоанализаторы упрощенного типа (УГ-2, ПГФ.2М1-МЗ, ГУ-4 и др.).


Выбор метода анализа загрязненного воздуха определяется природой примесей, а также ожидаемой концентрацией и целью анализа.

мод. «УВП-1200А» и мод. «УВП-2000А».

предназначены для удаления и очистки воздуха от абразивной, металлической и т.п. пыли, мелкой стружки, образующейся при работе заточных, шлифовальных и отрезных станков, может использоваться при работе по камню и стеклу. Установки осуществляют двухступенчатую очистку воздуха (через сухой циклон и блок рукавных фильтров). После очистки, воздух поступает обратно в помещение. Отходы накапливаются в металлическом коробе (внизу установки). Установки для очистки воздуха от абразивной пыли мод. " " и мод. " " имеют ручную систему регенерации фильтров (встряхивание). Конструкция у становок для очистки воздуха от абразивной пыли мод. " " и мод. " " обеспечивает оперативность при подготовке к работе без организации специального места, имеет колёса и может легко перемещаться.

Отличительные особенности:
- в холодное время года тёплый воздух остаётся в помещении;
- не требует специально оборудованного места;
- оперативность при подготовке к работе;
- простота в обслуживании.

Т Е Х Н И Ч Е С К А Я Х А Р А К Т Е Р И С Т И К А УВП-1200А, УВП-2000А

Производительность по воздуху, м 3 /ч

Создаваемое разряжение, Па

Среднемедианный размер улавливаемых частиц, мкм

Емкость пылесборника, м 3

Количество входных патрубков, шт.

Диаметр воздуховодов, мм

Наибольшее расстояние от станков, м

Степень очистки воздуха, %

Уровень шума, дБа

Мощность электродвигателя вентилятора, кВт

Габариты, мм

Масса, кг

ФИЛЬТРОЦИКЛОН ФКЦ

Предназначен для очистки воздуха от крупно-, средне- и мелко дисперсной пыли, образующейся в следующих технологических процессах: шлифование, обработка резанием, точением, обработка литейных форм, пескоструйная и дробеструйная обработка, пересыпка пылящих материалов и т.д. Небольшие габариты в сочетании с высокой производительностью позволяют создавать на базе локальные системы пылеочистки в непосредственной близости от источников пыления.
Применение современных фильтровальных материалов позволяет производить эффективную очистку загрязненного воздуха и осуществлять возврат очищенного воздуха обратно в рабочую зону.

Описание:

Сегодня деревообрабатывающая промышленность развивается быстрыми темпами. Особенно это касается производства мебели и изделий для домостроения. До 1990-х годов для улавливания пыли и стружки при аспирации деревообрабатывающих станков использовались в основном различного вида циклоны. В настоящее время все более широкое применение находят пылеуловители (фильтры) с использованием фильтровальных материалов. На наш взгляд, этот переход на другое оборудование связан с изменившейся экономической ситуацией в стране и со сменой собственника – развитием малого бизнеса.

Очистка воздуха на предприятиях деревообрабатывающей промышленности

Малогабаритные пылеуловители (промышленные фильтры) для аспирации древесной и других видов пыли

И. М. Квашнин , канд. техн. наук, ведущий специалист НПП «Энергомеханика-М»;

Д. В. Хохлов , директор НПП «Энергомеханика-М»

Сегодня деревообрабатывающая промышленность развивается быстрыми темпами. Особенно это касается производства мебели и изделий для домостроения.

До 1990-х годов для улавливания пыли и стружки при аспирации деревообрабатывающих станков использовались в основном различного вида циклоны.

В настоящее время все более широкое применение находят пылеуловители (фильтры) с использованием фильтровальных материалов. На наш взгляд, этот переход на другое оборудование связан с изменившейся экономической ситуацией в стране и со сменой собственника – развитием малого бизнеса.

Рассмотрим преимущества и недостатки обоих способов очистки воздуха: посредством циклонов и пылеуловителей.

Преимущества использования циклонов

Главное из них – это простота в устройстве и эксплуатации. Движущиеся части отсутствуют, обслуживание заключается в своевременном опорожнении бункера. Использование циклонов рационально при большом объеме образующихся отходов.

Недостатки использования циклонов

Главный из них с позиции собственника – унос теплоты из помещения с аспирационным воздухом, что называется «пускать деньги на ветер» (это послужило стимулом к применению тканевых фильтров). Другой минус – такие системы централизованные, т. е. имеют значительную протяженность воздуховодов и мощный вентилятор. Не зря в каталогах всех ведущих фирм пылевые вентиляторы начинаются с пятого номера и выше (отметим, что в России только три-четыре компании производят пылевые вентиляторы № 2,5, 3,15 и 4). Деревообрабатывающие участки, цеха имеют особенность – низкий коэффициент одновременности работы станков. Налицо перерасход электроэнергии из-за высокого аэродинамического сопротивления аспирационных систем и низкого КПД использования вентилятора. Другой недостаток циклонов – несоблюдение экологических нормативов качества атмосферного воздуха. Разработчикам инвентаризации и проекта нормативов предельно допустимых выбросов (ПДВ) загрязняющих веществ в атмосферу для предприятия хорошо известно, что при работе трех и более станков достичь ПДК для древесной пыли на границе санитарно-защитной зоны даже при очистке в высокоэффективном циклоне типа УЦ крайне затруднительно.

В большинстве случаев установлены: циклоны типа «К», которые предназначены для осаждения только стружки и крупнодисперсной пыли; циклоны типа «Ц», не рекомендованные в настоящее время к применению из-за забивания внутренних жалюзи при эксплуатации; циклоны НИИОГАЗ, не предназначенные специально для древесной пыли; самодельные циклоны, не выдерживающие какой-либо критики.

Циклон выполняет свои функции при проектном объеме очищаемого воздуха с небольшим варьированием. Как уже отмечалось, станки работают не одновременно. На неработающем оборудовании шиберы закрывают. Хотя и происходит некоторое перераспределение отсасываемого от станков воздуха, в целом его объем уменьшается. И наоборот, нередко встречаются случаи, когда в результате модернизации производства к существующей системе подключают новые станки, чтобы она «тянула», заменяют шкивы, электродвигатель или вентилятор в целом на более мощный, но циклон никогда не меняют. А зачем? Мелкую пыль и так ветер унесет, а крупную в лучшем случае можно подмести. Этому не способствуют и высокие цены – от 50 000 руб. на одиночный циклон УЦ-1 100 без бункера, соответствующий пылевому вентилятору № 5.

Преимущества промышленных фильтров

Главное из них – высокая степень очистки, позволяющая возвращать очищенный воздух в рабочее помещение. Соответственно, выполняются все экологические нормативы для атмосферного воздуха. Удивительно, но в советское время выпускался только один тип фильтров для улавливания древесной пыли ФРКН-В , и он не имел широкого применения. Очевидно, это связано с действовавшими в то время экологическими и вентиляционными нормами, а также низкой стоимостью теплоносителей. С начала 1990-х годов ситуация коренным образом изменилась. В первую очередь, сменился собственник: вместо государства пришли предприниматели. Значительно возросла доля мелких предприятий, например, в Пензенской области мебель делают даже в личных гаражах, сараях, складах. Для частных предпринимателей возникла проблема: с одной стороны, тепло в помещении надо сохранять, с другой, образующиеся опилки и стружки необходимо удалять. Очевидно, что без системы вентиляции находиться в помещении можно только в респираторе или специальной маске, а это не способствует повышению производительности труда. Сразу же возникла необходимость в простейшей системе аспирации. Она делается просто: на выходной патрубок вентилятора, аспирирующего станок, надевается мешок, не обязательно из фильтровальной ткани (рис. 1).

Неудобство заключается в том, что скапливающиеся в мешке отходы снижают площадь фильтрации, что приводит к уменьшению объема аспирируемого воздуха, вплоть до нуля.

Что интересно, подобные «мешочные фильтры» применялись на Западе еще в ХIХ веке для улавливания опилок при работе круглопильных станков и явились прообразом современных рукавных фильтров . Они подвешивались вертикально и опорожнялись через нижнюю часть. В России примерно с середины 1990-х годов получил распространение пылеуловитель, который сразу решил проблемы мелких предпринимателей. Другое его название – стружкоотсос (рис. 2). Их конструкция может незначительно различаться, но принцип действия один. Аспирируемая пылевоздушная смесь вентилятором 1 подается тангенциально в кольцевую часть 2, где с помощью циклонного элемента 3 происходит отделение крупных частиц, которые оседают и скапливаются в нижней части 4 сборного мешка 5. Весь воздушный поток с содержащейся в нем мелкой пылью через центральную часть элемента 3 поступает в верхнюю часть 6, представляющую собой рукав из фильтровальной ткани. Схематично работу пылеуловителя можно представить так: отходы скапливаются в нижнем мешке, а воздух уходит через верхний. Объем нижнего мешка рассчитывается исходя из условия возможности его переноски вручную к месту складирования отходов. Для бесперебойности работы следует иметь сменный сборный мешок. Возможно использование одноразовых полиэтиленовых мешков. Тогда их рекомендуется вкладывать в металлическую емкость такого же диаметра, чтобы исключить давление на стенки, создаваемое вентилятором. Размер, а точнее площадь поверхности, фильтровального рукава F, м 2 , должна быть согласована с производительностью вентилятора и равна

где L – объем очищаемого воздуха, м 3 ;

l – удельная воздушная нагрузка фильтровального рукава, м 3 /(м 2 ч), которая показывает, какой объем воздуха (м 3 /ч), допускается пропускать через 1 м 2 фильтрующей поверхности для обеспечения ее паспортной степени очистки.

По данным , для большинства материалов удельная воздушная нагрузка фильтровального рукава лежит в пределах 360–900 м 3 /(м 2 ч).

Некоторые производители в рекламе пылеуловителей указывают большой объем очищаемого воздуха L при малой фактической площади фильтровальных рукавов F, которую иногда вообще не приводят, т. е. величина l завышается. Марка фильтровального материала считается коммерческой тайной. В итоге заявленную степень очистки и минимальный размер улавливаемых частиц трудно проверить даже специалисту. Регенерация фильтровального материала осуществляется вручную путем встряхивания и вытряхивания рукавов. При необходимости рукав можно снять и постирать.

Пылеуловитель устанавливают в том же помещении, что и станок, на расстоянии до 3–7 м и соединяют с ним гибким съемным шлангом; пылеуловитель имеет свою регулируемую опору, поэтому эта система, назовем ее пылеулавливающей системой (ПУС), мобильна. Занимаемая площадь пола – не более 0,7 м 2 . Это важно для предпринимателей-арендаторов. Наиболее удачна, на наш взгляд, конструкция пылеулавливающей системы с двумя рукавами (рис. 3). Пылевой вентилятор № 3,15 с электродвигателем мощностью 2,2 кВт, 3 000 об./мин, помещается в средней части корпуса и имеет два выходных патрубка – по одному на каждую стойку, конструкция каждой из которых идентична представленной на рис. 2. Входной патрубок вентилятора может располагаться как снизу, так и сверху, что связано с удобством подключения аспирационных шлангов от станков.

Количество входных патрубков, а следовательно, и подсоединяемых шлангов к ПУС может быть от одного до трех с варьированием диаметров от 200 до 100 мм. Разные производители указывают различные диаметры – это зависит от характеристики P V – L используемого вентилятора. Крайне неправильно ориентироваться на диаметр патрубков местных отсосов деревообрабатывающих станков. Они часто рассчитаны на централизованную аспирацию, а местная ПУС при таких диаметрах шлангов может не обеспечить требуемого разрежения и расхода воздуха.

Эксперименты по оптимизации конструкции вентилятора ПУС, в частности, при варьировании зазора между рабочим колесом и «языками» у выходных патрубков, показали: при уменьшении зазора улучшалась индивидуальная характеристика, но увеличивался и уровень шума, становясь сильнее, чем у обслуживаемых станков, и выше допустимого по действующим нормативам. Нами проведены аэродинамические испытания ПУС по ГОСТ 10921-90 для вентиляторов.

Отличие заключается в том, что определяется не полное давление, создаваемое вентилятором (сумма полных давлений на линии всасывания и нагнетания), а только полное давление (разрежение) на линии всасывания – P VR , что следует из схемы ПУС.

При испытаниях выявилось очень важное обстоятельство: характеристики пылеуловителя (P VR – L) без шлангов и со шлангами различны. Это нельзя объяснить только изменившейся характеристикой сети. Происходит также скачкообразное перераспределение полного давления вентилятора между всасывающей и нагнетательной составляющей. Постоянное перераспределение давлений происходит и при снятии характеристик P VR – L. Отсюда следует важный вывод: характеристика пылеуловителя P VR – L должна быть представлена совместно с подсоединенными шлангами рекомендуемой длины (рис. 4).

Поэтому мы говорим о пылеулавливающей системе ПУС, состоящей из вентилятора, циклонного элемента, фильтра и присоединяемых шлангов. В каталогах и рекламных материалах фирм часто вообще отсутствует характеристика P VR – L, а показывается по одному максимальному значению P VR и L, что явно недостаточно. Иногда вместо полного разрежения P VR указывают статическое PSR, что создает видимость хорошей характеристики.

На рис. 4 сплошной линией показана часть характеристик, при которых обеспечивается скорость транспортирования 17–21 м/с. Видно, что лучшая характеристика для ПУС с одним входом диаметром 200 мм; два входа диаметром 140 мм эффективней двух входов с диаметром 125 мм. Интересно, что если перекрыть один из двух входов диаметром 125 или 140 мм, то значения P VR и L увеличатся лишь на 10–20 %.

При подборе ПУС для конкретного станка или местного отсоса достаточно нанести расчетную точку с заданными значениями L и P VR на поле графика (рис. 4) и выбрать ближайшую вышележащую характеристику. Для местных отсосов, имеющих коэффициент местного сопротивления больше единицы x > 1, к заданному P VR следует прибавить:

D R = (x – 1) rn 2 / 2,

где r – плотность воздуха, кг/м 3 , для стандартных условий равна 1,2;

n – скорость воздуха в приемном патрубке местного отсоса. Сопротивление ПУС при x ≤ 1 уже учтено в характеристике при испытаниях.

Эффективность ПУС может быть занижена на 20 % и более при неудачной конструкции входа в вентилятор. Обязательно наличие прямого участка, желательно два и более калибра. Например, в одном из стружкоотсосов производства Болгарии он близок к 1 м при верхнем входе. Два патрубка желательно объединять штанообразным тройником.

Удобство использования ПУС с двумя фильтрами выражается и в том, что ее характеристики соответствуют паспортным данным требуемого объема отсасываемого воздуха от большинства видов деревообрабатывающих станков .

Одной из решающих причин распространения ПУС явилась ее дешевизна. Стоимость ПУС без шлангов равна 12 900 руб. Две ПУС по производительности заменяют циклон УЦ-1 100 и пылевой вентилятор № 5, стоимость которых без воздуховодов, но с бункером для отходов и постаментом превышает 100 000 руб.

Таким образом, применение ПУС обойдется в четыре раза дешевле. Это не считая экономии электроэнергии 3–6 кВт ч и более, в зависимости от мощности электродвигателя пылевого вентилятора.

Недостатки промышленных фильтров

Главный из них, наряду с ручной регенерацией, это частая смена сборных мешков при значительном количестве образующихся отходов, что ограничивает область применения ПУС с двумя фильтрами. Конструкция в целом оказалась настолько удачной, что ведущие производители, «Консар» и «Эковент», выпускают и с успехом реализуют стружкоотсосы с 3–8 фильтрами и таким же количеством нижних сборных мешков. Следующий шаг – объединение нижних мешков в один бункер для отходов. В рамках данной статьи не рассматриваются фильтры в корпусе с автоматической регенерацией, обратной и струйной продувкой. Они, естественно, лучше, но требуют совсем других денег. При использовании фильтров с выпуском очищенного воздуха в обслуживаемое помещение, т. е. со 100 % рециркуляцией, для достижения ПДК воздуха рабочей зоны следует устраивать общеобменную приточно-вытяжную вентиляцию. Воздухообмен будет зависеть, в первую очередь, от полноты улавливания выделяющейся пыли местными отсосами деревообрабатывающего оборудования.

Ничто не мешает использовать ПУС для других видов пыли. При небольшой конструктивной доработке и замене фильтровальной ткани стало возможным улавливание абразивной пыли от заточных, шлифовальных и других станков. Они сразу же составили конкуренцию выпускающимся с советских времен аппаратам ЗИЛ-900М, ПА-212 и ПА-218. Нашей компанией внедрены ПУС во взрывозащищенном исполнении для улавливания сахарной пудры при производстве кондитерских изделий. Успешно работают ПУС при аспирации рабочих мест порошковой окраски изделий. Одной ПУС достаточно для удовлетворительного обслуживания двух полировальных станков с двумя войлочными кругами Ф 500 мм каждый, т. е. с четырьмя входными патрубками Ф 127 мм. Имеются и другие примеры использования ПУС. В настоящее время ведется работа по разработке ПУС для улавливания растительной пыли, выделяющейся при производстве комбикормов и др. Имеется и отрицательный опыт внедрения ПУС, а именно при улавливании пыли, образующейся в процессе фигурной резки кирпича для каминов. По технологическим требованиям смачивание при резке запрещается. Уже через 15–20 мин ткань забивается мелкодисперсной пылью. Регенерация встряхиванием рукавов не дает требуемого эффекта.

Заключение

Представленный малогабаритный пылеуловитель эффективно применяется для улавливания древесной пыли, экономичен, дешев, прост в эксплуатации, позволяет экономить тепловую энергию; может быть рекомендован для улавливания других видов пыли при правильном подборе марки и площади поверхности фильтровального материала.

Литература

1. Богословский В. Н., Пирумов А. И., Посохин В. Н. и др.; под ред. Павлова Н. Н. и Шиллера Ю. И. Внутренние санитарно-технические устройства. Ч. 3: в 3 ч. // Кн. 1: Вентиляция и кондиционирование воздуха. М.: Стройиздат, 1992.

2. Экотехника. Защита атмосферного воздуха от выбросов пыли, аэрозолей и туманов / Под ред. Чекалова Л. В. Ярославль: Русь, 2004.

3. Мазус М. Г., Мальгин А. Д., Моргулис М. А. Фильтры для улавливания промышленных пылей. М.: Машиностроение, 1985.

Промышленная очистка воздуха на предприятиях позволяет защитить здоровье людей от вредных микрочастиц, примесей, угарного газа, которые активно попадают в воздух во время производственного процесса и оседают на оборудовании и окружающих предметах. Существенное загрязнение повлечет негативные последствия для здоровья человеческого организма. Как следствие, приведет к неэффективным показателям производства, низкому КПД и убыткам для предприятия.

Современные системы полностью нейтрализуют все продукты распада химических веществ, дыма, пыли. Позволяют сохранить свежесть, насыщают кислородом, сохраняют температуру, необходимую для рабочего процесса. Именно для защиты, сохранности здоровья и поддержания активного трудового процесса были созданы вентиляционные системы. Их выбор зависит от уровня вредности производства и финансовых возможностей.

Система вентиляции и очистка воздуха на промышленных предприятиях

Промышленные воздухоочистители станут подходящим решением проблемы и сохранят здоровье сотрудников и безопасность на производстве. В зависимости от степени загрязнения воздуха и токсичности отходов и пыли, а также от вида производства используются разные типы систем вентиляции.