Термическое сопротивление вертикальных цилиндрических воздушных прослоек. Теплоизолирующая способность воздушных прослоек. Испытание макета теплоизоляционной системы с управляемой теплоизоляцией путем использования вентиляционных выбросов здания

Обои

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек , расположенных между слоями ограждающей конструкции, называют термическим сопротивлением Rв.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис.5. Теплообмен в воздушной прослойке.

Тепловой поток, проходящий через воздушную прослойку qв.п, Вт/м², складывается из потоков, передаваемых теплопроводностью (2) qт, Вт/м², конвекцией (1) qк, Вт/м², и излучением (3) qл, Вт/м².

24. Условное и приведенное сопротивление теплопередаче. Каоффицент теплотехнической однородности ограждающих конструкций.

25. Нормирование сопротивления теплопередаче исходя из санитарно-гигиенич.условий

, R 0 = *

Нормируем Δ t н, тогда R 0 тр = * , т.е. для того, чтобы Δ t≤ Δ t н Необходимо

R 0 ≥ R 0 тр

СНиП распространяет это требование на приведенное сопротивл. теплопередаче.

R 0 пр ≥ R 0 тр

t в - расчетная температура внутреннего воздуха, °С;

приним. по нормам для проектир. здания

t н - - расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92

A в (альфа)- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, принимаемый по СНиП

Δt н - нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимаемых по CНиП

Требуемое сопротивление теплопередаче R тр о дверей и ворот должно быть не менее 0,6R тр о стен зданий и сооружений, определяемого по формуле (1) при расчетной зимней температуре наружного воздуха, равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92.

При определении требуемого сопротивления теплопередаче внутренних ограждаюших конструкций в формуле (1) следует принимать вместо t н -расчетную температуру воздуха более холодного помещения.

26. Теплотехнический расчет необходимой толщины материала ограждения исходя из условий достижения требуемого сопротивления теплопередаче.

27. Влажность материала. Причины увлажнения конструкции

Влажность – физическая величина равная кол-ву воды, содержащейся в порах материала.

Бывает по массе и объемная

1)Строительная влага. (при возведении здания). Зависит от конструкции и способа возведения работ. Сплошная кирпичная кладка хуже керамических блоков. Наиболее благоприятна древесина(сборные стены). ж/б не всегда. Должна исчезнуть за 2=-3 года эксплуатации.Меры: просушка стен

Грунтовая влага. (капиллярное всасывание). Доходит до уровня 2-2,5 м. водоизолирующие слои, при правильном устройстве не влияет.


2)Грунтовая влага, проникает в ограждение из грунта вследствие капиллярного всасывания

3)Атмосферная влага . (косой дождь,снег). Особенно важно у крыш и карнизов.. сплошные кирпичные стены не требуют защиты при правильно сделанной расшивке.ж/б, легкобетонные панели внимание на стыки и оконные блоки, фактурный слой из водонепроницаемых материалов. Защита=защитная стенка на откосе

4)Эксплуатационная влага . (в цехах промышленных зданий, в основном в полах и ниж части стен)решение: водонепроницаемые полы, устройство водоотвода, облицовка нижней части керамической плиткой, водонепроницаемая штукатурка. Защита=защитная облицовка с внутр. стороны

5)Гигроскопическая влага . Обусловлена повышенной гигроскопичностью мат.-лов(свойство поглощать водяные пары из влажн.воздуха)

6)Конденсация влаги из воздуха :а)на поверхность ограждения.б)в толще ограждения

28. Влияние влажности на свойства конструкций

1)С повышением влажности повышается теплопроводность конструкции.

2)Влажностные деформации. Влажность гораздо хуже, чем тепловое расширение. Отслаивание штукатурки в рез-те скопившейся влаги под ней, затем влага замерзает, расширяется в объеме и отрывает штукатурку. Невлагостойкие мат-лы при увлажнении деформируются. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание.

3)Снижение долговечности-кол-ва лет безотказной работы конструкции

4)Биологические повреждения (грибок, плесень)из-за выпадения росы

5)Потеря эстетического вида

Следовательно при выборе материалов учитывают их влажностный режим и выбирают материалы с наим влажностью. Также чрезмерная влажность в помещении может вызвать распространение заболеваний и инфекций.

С технической точки зрения, приводит к потерям долговечности и конструкции и ее морозостойких св-в. Некоторые материалы при повышенной влажности теряют механическую прочность, меняют форму. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание. Коррозия металла. ухудшение внешнего вида.

29. Сорбция водяного пара строит. матер. Механизмы сорбции. Гистерезис сорбции.

Сорбция - процесс поглощения водяного пара, который приводит к равновесному влажностному состоянию материала с воздухом. 2 явления. 1. Поглощение в результате соударения молекулы пар с поверхностью пор и прилипание к этой поверхности(адсорбция)2. Прямое растворение влаги в объеме тела(абсорбция). Влажность увеличивается с увеличением относительной упругости и понижением температуры. «десорбция» если влаж.образец поместить в эксикаторы (раствор серной кислоты), то он отдает влагу.

Механизмы сорбции:

1.Адсорбция

2.Капиллярная конденсация

3.Объемное заполнение микропор

4.Заполнение межслоевого пространства

1 стадия. Адсорбция-это явление, при котором поверхность пор покрывается одним или несколькими слоями молекул воды.(в мезопорах и макропорах).

2 стадия. Полимолекулярная адсорбция - образуется многослойный адсорбированный слой.

3 стадия. Капиллярная конденсация.

ПРИЧИНА. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской поверхностью жидкости. В капиллярах малого радиуса влага образует вогнутые миниски, поэтому появляется возможность капиллярной конденсации. Если D>2*10 -5 см, то капиллярной конденсации не будет.

Десорбция – процесс естественного высушивания материала.

Гистерезис («различие») сорбции заключается в различии изотермы сорбции, полученной при увлажнении материала от изотермы десорбции, полученной от высушенного материала. показывает % разницу между весовой влажностью при сорбции и вес влажностью десорбции (десорбция 4.3%,сорбция 2,1%, гистерезис 2,2%)при увлажнении изотермы сорбции. При высыхании десорбции.

30. Механизмы влагопереноса в материалах стройконструкций. Паропроницаемость, капиллярное всасыванье воды.

1.В зимнее время из-за разности температур и при разных парциальных давлениях через ограждение проходит поток водяного пара (от внутренней поверхности к наружной)-диффузия водяного пара. Летом наоборот.

2. Конвективный перенос водяного пара (с потоком воздуха)

3. Капилярный перенос воды (просачивание) сквозь пористые матер.

4. Гравитационный протечки воды сквозь трещины , отверстия, макропоры.

Паропроницаемость – сво-во материала или конструкции, выполненой из них, пропускать сквозь себя водяной пар.

Коэф.поропроницаемости - Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич.

Сопротивление паропроницанию: R=толщина/мю

Мю -коэф паропроницаемости (определяется по СНИПу 2379 теплотехника)

Капиллярное всасывание воды стройматериалами – обеспечивает постоянный перенос жидкой влаги сквозь пористые материалы из области с высокой концентрацией в область с низкой концентрацией.

Чем тоньше капилляры, тем больше сила капилярного всасывания, но в целом скорость переноса уменьшается.

Капилярный перенос может быть уменьшен или устранен путем устройства соответствующего барьера (небольш. воздушные прослойка или капилярно-неактивный слой(непористый)).

31. Закон Фика. Коэффициент паропроницаемости

P(количество пара, г) = (eв-eн)F*z*(мю/толщину),

Мю – коэф. паропроницаемости (определяется по СНИПу 2379 теплотехника)

Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.[мг/(м 2 *Па)].Наименьшее мю имеет руберойд 0.00018, наибольшее мин.вата=0,065г/м*ч*мм.рт.ст., оконное стекло и металлы паронепроницаемы, воздух наибольшая паропрониц-ть. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич. Зависит от физич свойства материала и отражает его способность проводить диффундирующий через него водяной пар. Анизотропные материалы имеют разные мю(у дерева вдоль волокон=0,32,поперек=0,6).

Эквивалентное сопротивление паропроницанию ограждения при последовательном расположении слоев. Закон Фика.

Q=(e 1 -e 2)/R n qR n1n =(e n1n-1 -e 2)


32 Расчет распределения парциального давления водяного пара по толщине конструкции.

Толщина воздушной прослойки, м Термическое сопротивление замкнутой воздушной прослойкиR вп , м 2 · °С/Вт
горизонтальной при потоке теплоты снизу вверх и вертикальной горизонтальной при потоке теплоты сверху вниз
при температуре воздуха в прослойке
положительной отрицательной положительной отрицательной
0,01 0,13 0,15 0,14 0,15
0,02 0,14 0,15 0,15 0,19
0,03 0,14 0,16 0,16 0,21
0,05 0,14 0,17 0,17 0,22
0,10 0,15 0,18 0,18 0,23
0,15 0,15 0,18 0,19 0,24
0,20-0,30 0,15 0,19 0,19 0,24

Исходные данные для слоев ограждающих конструкций;
- деревянного пола (шпунтованная доска); δ 1 = 0,04 м; λ 1 = 0,18 Вт/м °С;
- пароизоляция ; несущественно.
- воздушной прослойки : Rпр = 0,16 м2 °С/Вт; δ 2 = 0,04 м λ 2 = 0,18 Вт/м °С; (Термическое сопротивление замкнутой воздушной прослойки >>>.)
- утеплителя (стиропор); δ ут = ? м; λ ут = 0,05 Вт/м °С;
- черновой пол (доска); δ 3 = 0,025 м; λ 3 = 0,18 Вт/м °С;

Деревянное перекрытие в каменном доме.

Как мы уже отмечали для упрощения теплотехнического расчета введен повышающий коэффициент (k ), который приближает величину расчетного теплосопротивления к рекомендуемым теплосопротивлениям ограждающих конструкций; для надподвальных и цокольных перекрытий этот коэффициент равен 2,0. Требуемое теплосопротивление рассчитываем исходя из того, что температура наружного воздуха (в подполе) равна; - 10°С. (впрочем, каждый может поставить ту температуру, которую посчитает нужной для своего конкретного случая).

Считаем:

Где Rтр - требуемое теплосопротивление,
- расчетная температура внутреннего воздуха, °С. Она принимается по СНиПу и равняется 18 °С, но, поскольку все мы любим тепло, то предлагаем температуру внутреннего воздуха поднять до 21°С.
- расчетная температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки в заданном районе строительстве. Предлагаем температуру в подполе принять "-10°С", это конечно же для Московской области большой запас, но здесь по нашему мнению лучше перезаложиться чем не досчитать. Ну а если следовать правилам, то температура наружного воздуха tн принимается согласно СНиПу "Строительная климатология". Также необходимую нормативную величину можно выяснить в местных строительных организациях, либо районных отделах архитектуры.
δt н · α в - произведение, находящиеся в знаменателе дроби, равно: 34,8 Вт/м2 - для наружный стен, 26,1 Вт/м2 - для покрытий и чердачных перекрытий, 17,4 Вт/м2 (в нашем случае ) - для надподвальных перекрытий.

Теперь рассчитываем толщину утеплителя из экструдированного пенополистирола (стиропора) .

Где δ ут - толщина утепляющего слоя , м;
δ 1 …… δ 3 - толщина отдельных слоев ограждающих конструкций , м;
λ 1 …… λ 3 - коэффициенты теплопроводности отдельных слоев , Вт/м °С (см. Справочник строителя);
Rпр - тепловое сопротивление воздушной прослойки , м2 °С/Вт. Если в ограждающей конструкции воздушный продух не предусмотрен, то эту величину исключают из формулы;
α в, α н - коэффициенты теплопередачи внутренней и наружной поверхности перекрытия , равные соответственно 8,7 и 23 Вт/м2 °С;
λ ут - коэффициент теплопроводности утепляющего слоя (в нашем случае стиропор - экструдированный пенополистирол), Вт/м °С.

Вывод; Для того чтобы удовлетворять предъявленным требованиям по температурному режиму эксплуатации дома, толщина утепляющего слоя из пенополистирольных плит, расположенного в цокольном перекрытие пола по деревянным балкам (толщина балок 200 мм) должна быть не менее 11 см . Так как мы изначально задали завышенные параметры, то варианты могут быть следующие; это либо пирог из двух слоев 50 мм плит стиропора (минимум), либо пирог из четырех слоев 30 мм плит стиропора (максимум).

Строительство домов в Московской области:
- Строительство дома из пеноблока в Московской области. Толщина стен дома из пеноблоков >>>
- Расчет толщины кирпичных стен при строительстве дома в Московской области. >>>
- Строительство деревянного брусового дома в Московской области. Толщина стены брусового дома. >>>


Контрольная работа

по теплофизике № 11

Термическое сопротивление воздушной прослойки

1. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура - термическое сопротивление» является прямой

2. От чего зависит термическое сопротивление воздушной прослойки и почему

3. Причины, вызывающие возникновение разности давления с одной и другой стороны ограждения

температура сопротивление воздух прослойка ограждение

1. Доказать, что линия снижения температуры в толще многослойного ограждения в координатах «температура - термическое сопротивление» является прямой

Пользуясь уравнением сопротивления теплопередаче ограждения можно определить толщину одного из его слоев (чаще всего утеплителя - материала с наименьшим коэффициентом теплопроводности), при котором ограждение будет иметь заданную (требуемую) величину сопротивления теплопередаче. Тогда требуемое сопротивление утеплителя можно вычислить как, где - сумма термических сопротивлений слоев с известными толщинами, а минимальную толщину утеплителя - так: . Для дальнейших расчетов толщину утеплителя необходимо округлять в большую сторону кратно унифицированным (заводским) значениям толщины того или иного материала. Например, толщину кирпича - кратно половине его длины (60 мм), толщину бетонных слоев - кратно 50 мм, а толщину слоев из иных материалов - кратно 20 или 50 мм в зависимости от шага, с которым они изготавливаются на заводах. При ведении расчетов сопротивлениями удобно пользоваться из-за того, что распределение температур по сопротивлениям будет являться линейным, а значит расчеты удобно вести графическим способом. В этом случае угол наклона изотермы к горизонту в каждом слое одинаков и зависит только от соотношения разности расчетных температур и сопротивления теплопередачи конструкции. А тангенс угла наклона есть не что иное как плотность теплового потока, проходящего через данное ограждение: .

При стационарных условиях плотность теплового потока постоянна во времени, и значит, где R х - сопротивление части конструкции, включающее сопротивление теплообмену внутренней поверхности и термические сопротивления слоев конструкции от внутреннего слоя до плоскости, на которой ищется температура.

Тогда. Например, температура между вторым и третьим слоем конструкции может быть найдена так: .

Приведенные сопротивления теплопередаче неоднородных ограждающих конструкций или их участков (фрагментов) следует определять по справ очнику, приведенные сопротивления плоских ограждающих конструкций с теплопроводными включениями также следует определять по справ очнику.

2. От чего зависит термическое сопротивление воздушной прослойки и почему

Происходит помимо передачи тепла теплопроводностью и конвекцией в воздушной прослойке еще и непосредственное излучение между поверхностями, ограничивающими воздушную прослойку.

Уравнение теплообмена излучением: , где б л - коэффициент передачи тепла излучением, в большей степени зависящий от материалов поверхностей прослойки (чем ниже коэффициенты излучения материалов, тем меньше и б л) и средней температуры воздуха в прослойке (с увеличением температуры растет коэффициент теплопередачи излучением).

Таким образом, где л экв - эквивалентный коэффициент теплопроводности воздушной прослойки. Зная л экв, можно определить термическое сопротивление воздушной прослойки. Впрочем, сопротивления R вп можно определить и по справ очнику. Они зависят от толщины воздушной прослойки, температуры воздуха в ней (положительной или отрицательной) и вида прослойки (вертикальной или горизонтальной). О количестве тепла, передаваемого теплопроводностью, конвекцией и излучением через вертикальные воздушные прослойки, можно судить по следующей таблице.

Толщина прослойки, мм

Плотность теплового потока, Вт/м 2

Количество тепла в %, передаваемого

Эквивалентный коэффициент теплопроводности, м о С/Вт

Термическое сопротивление прослойки, Вт/м 2о С

теплопроводностью

конвекцией

излучением

Примечание: приведенные в таблице величины соответствуют температуре воздуха в прослойке, равной 0 о С, разности температур на ее поверхностях 5 о С и коэффициенту излучения поверхностей С=4,4.

Таким образом, при проектировании наружных ограждений с воздушными прослойками необходимо учитывать следующее:

1) увеличение толщины воздушной прослойки мало влияет на уменьшение количества тепла, проходящего через нее, и эффективными в теплотехническом отношении являются прослойки небольшой толщины (3-5 см);

2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну прослойку большой толщины;

3) толстые прослойки целесообразно заполнять малотеплопроводными материалами для увеличения термического сопротивления ограждения;

4) воздушная прослойка должна быть замкнутой и не сообщаться с наружным воздухом, то есть вертикальные прослойки необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий (более частое перегораживание прослоек по высоте практического значения не имеет). Если есть необходимость устройства прослоек, вентилируемых наружным воздухом, то они подлежат особому расчету;

5) вследствие того, что основная доля тепла, проходящего через воздушную прослойку, передается излучением, прослойки желательно располагать ближе к наружной стороне ограждения, что повышает их термическое сопротивление;

6) кроме того, более теплую поверхность прослойки рекомендуется покрывать материалом с малым коэффициентом излучения (например, алюминиевой фольгой), что значительно уменьшает лучистый поток. Покрытие же таким материалом обеих поверхностей практически не уменьшает передачу тепла.

3. Причины, вызывающие возникновение разности давления с одной и другой стороны ограждения

В зимнее время воздух в отапливаемых помещениях имеет температуру более высокую, чем наружный воздух, и, следовательно, наружный воздух обладает большим объемным весом (плотностью) по сравнению с внутренним воздухом. Эта разность объемных весов воздуха и создает разности его давлений с двух сторон ограждения (тепловой напор). Воздух попадает в помещение через нижнюю часть наружных его стен, а уходит из него через верхнюю часть. В случае воздухонепроницаемости верхнего и нижнего ограждений и при закрытых проемах разность давлений воздуха достигает максимальных значений у пола и под потолком, а на середине высоты помещения равна нулю (нейтральная зона).

Подобные документы

    Тепловой поток, проходящий через ограждение. Сопротивления тепловосприятию и теплоотдаче. Плотность теплового потока. Термическое сопротивление ограждения. Распределение температур по сопротивлениям. Нормирование сопротивления теплопередаче ограждений.

    контрольная работа , добавлен 23.01.2012

    Передача тепла через воздушную прослойку. Малый коэффициент теплопроводности воздуха в порах строительных материалов. Основные принципы проектирования замкнутых воздушных прослоек. Меры по повышению температуры внутренней поверхности ограждения.

    реферат , добавлен 23.01.2012

    Сопротивление от трения в буксах или подшипниках полуосей троллейбусов. Нарушение симметрии распределения деформаций по поверхности колеса и рельса. Сопротивление движению от воздействия воздушной среды. Формулы для определения удельного сопротивления.

    лекция , добавлен 14.08.2013

    Изучение возможных мер по повышению температуры внутренней поверхности ограждения. Определение формулы по расчету сопротивления теплопередаче. Расчетная температура наружного воздуха и теплопередача через ограждение. Координаты "температура-толщина".

    контрольная работа , добавлен 24.01.2012

    Проект релейной защиты линии электропередачи. Расчет параметров ЛЭП. Удельное индуктивное сопротивление. Реактивная и удельная емкостная проводимость воздушной лини. Определение аварийного максимального режима при однофазном токе короткого замыкания.

    курсовая работа , добавлен 04.02.2016

    Дифференциальное уравнение теплопроводности. Условия однозначности. Удельный тепловой поток Термическое сопротивление теплопроводности трехслойной плоской стенки. Графический метод определения температур между слоями. Определение констант интегрирования.

    презентация , добавлен 18.10.2013

    Влияние числа Био на распределение температуры в пластине. Внутреннее, внешнее термическое сопротивление тела. Изменение энергии (энтальпии) пластины за период полного ее нагревания, остывания. Количество теплоты, отданное пластиной в процессе охлаждения.

    презентация , добавлен 15.03.2014

    Потери напора на трение в горизонтальных трубопроводах. Полная потеря напора как сумма сопротивления на трение и местные сопротивления. Потери давления при движении жидкости в аппаратах. Сила сопротивления среды при движении шарообразной частицы.

    презентация , добавлен 29.09.2013

    Проверка теплозащитных свойств наружных ограждений. Проверка на отсутствие конденсации на внутренней поверхности наружных стен. Расчет тепла на нагрев воздуха, поступающего инфильтрацией. Определение диаметров трубопроводов. Термическое сопротивление.

    курсовая работа , добавлен 22.01.2014

    Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

Малый коэффициент теплопроводности воздуха в порах строительных материалов, достигающий 0,024 Вт/(м °С), привел к идее замены в наружных ограждающих конструкциях строительных материалов воздухом, т. е. созданию наружных ограждений из двух стенок с воздушной прослойкой между ними. Однако теплотехнические качества таких стен оказались чрезвычайно низкими, т.к. передача теплоты воздушными прослойками происходит иначе, чем в телах твердых и сыпучих. Для воздушной прослойки такой пропорциональности не существует. В твердом материале передача теплоты происходит только теплопроводностью, в воздушной прослойке к этому присоединяется еще передача теплоты конвекцией и излучением.

На рис показан вертикальный разрез воздушной прослойки, имеющей толщину δ, и температуры на ограничивающих поверхностях τ 1 и τ 2 , причем τ 1 > τ 2 . При такой разности температур через воздушную прослойку будет проходить тепловой поток Q.

Передача теплоты теплопроводностью подчиняется закону передачи теплоты в твердом теле. Следовательно, можно написать:

Q 1 =(τ 1 - τ 2)λ 1 /δ

где λ 1 - коэффициент теплопроводности неподвижного воздуха (при температуре 0 °С λ 1 = 0,023 Вт/(м °С)), Вт/(м °С); δ - толщина прослойки, м.

Конвекция воздуха в прослойке возникает вследствие разности температур на ее поверхностях и имеет характер естественной конвекции. При этом у поверхности с более высокой температурой воздух нагревается и движется в направлении снизу вверх, а у более холодной поверхности охлаждается и движется в направлении сверху вниз. Таким образом, в вертикальной воздушной прослойке создается постоянная циркуляция воздуха, показанная на рис стрелками. По аналогии с формулой для количества теплоты, передаваемой конвекцией, можно написать:

Q 2 =(τ 1 - τ 2)λ 2 /δ 2

где λ 2 - условный коэффициент, называемый коэффициентом передачи теплоты конвекцией, Вт/(м °С).

В отличие от обычного коэффициента теплопроводности этот коэффициент не является постоянной величиной, а зависит от толщины прослойки, температуры воздуха в ней, разности температур на поверхностях прослойки и расположения прослойки в ограждении.

Для вертикальных прослоек значения величин коэффициентов влияние температуры воздуха в пределах от +15 до -10 °С на теплопередачу конвекцией не превышает 5 %, а поэтому им можно пренебречь.

Коэффициент передачи теплоты конвекцией возрастает с увеличением толщины прослойки. Это возрастание объясняется тем, что в тонких прослойках восходящий и нисходящий токи воздуха взаимно тормозятся и в очень тонких прослойках (меньше 5 мм) величина λ 2 становится равной нулю. С увеличением толщины прослойки, наоборот, конвекционные токи воздуха становятся более интенсивными, увеличивая значение λ 2 . С увеличением разности температур на поверхностях прослойки величина λ 2 возрастает вследствие повышения интенсивности конвекционных токов в прослойке.

Увеличение значений λ 1 + λ 2 в горизонтальных прослойках при потоке теплоты снизу вверх объясняется непосредственным направлением конвекционных токов по вертикали от нижней поверхности, имеющей более высокую температуру, к верхней поверхности, имеющей более низкую температуру. В горизонтальных прослойках при потоке теплоты сверху вниз конвекция воздуха отсутствует, поскольку поверхность с более высокой температурой расположена над поверхностью с более низкой температурой. В этом случае принимается λ 2 = 0.

Кроме передачи теплоты теплопроводностью и конвекцией в воздушной прослойке происходит еще непосредственное излучение между поверхностями, ограничивающими воздушную прослойку. Количество теплоты Q 3 , передаваемой в воздушной прослойке излучением от поверхности с более высокой температурой τ 1 к поверхности с более низкой температурой τ 2 , можно выразить по аналогии с предыдущими выражениями в виде:

Q 2 =(τ 1 - τ 2)α л

где α л - коэффициент теплоотдачи излучением, Вт/(м2 °С).

В этом равенстве отсутствует множитель δ, т. к. количество теплоты, передаваемой излучением, в воздушных прослойках, ограниченных параллельными плоскостями, не зависит от расстояния между ними.

Коэффициент α л определяется по формуле. Коэффициент α л также не является постоянной величиной, а зависит от коэффициентов излучения поверхностей, ограничивающих воздушную прослойку и, кроме того, от разности четвертых степеней абсолютных температур этих поверхностей.

При температуре, равной 25 °С, значение температурного коэффициента увеличивается на 74 % по сравнению с его значением при температуре -25 °С. Следовательно, теплозащитные свойства воздушной прослойки будут улучшаться по мере понижения ее средней температуры. В теплотехническом отношении лучше располагать воздушные прослойки ближе к наружной поверхности ограждения, где температуры в зимнее время будут более низкими.

Выражение λ 1 + λ 2 + α л δ можно рассматривать как коэффициент теплопроводности воздуха в прослойке, подчиняющийся законам передачи теплоты через твердые тела. Этот суммарный коэффициент носит название «эквивалентного коэффициента теплопроводности воздушной прослойки» λ э Таким образом, имеем:

λ э = λ 1 + λ 2 + α л δ

Зная эквивалентный коэффициент теплопроводности воздуха в прослойке, термическое сопротивление его определяют по формуле так же, как и для слоев из твердых или сыпучих материалов, т. е.

Эта формула применима только для замкнутых воздушных прослоек, т. е. не имеющих сообщения с наружным или внутренним воздухом. Если прослойка имеет сообщение с наружным воздухом, то в результате проникания холодного воздуха термическое сопротивление ее может не только стать равным нулю, но и послужить причиной уменьшения сопротивления теплопередаче ограждения.

Для уменьшения количества теплоты, проходящей через воздушную прослойку, необходимо уменьшить одну из составляющих полного количества теплоты, передаваемой прослойкой. Эта задача прекрасно решена в стенках сосудов, предназначенных для хранения жидкого воздуха. Стенки этих сосудов состоят из двух стеклянных оболочек, между которыми выкачивается воздух; поверхности стекла, обращенные внутрь прослойки, покрываются тонким слоем серебра. При этом количество теплоты, передаваемой конвекцией, сводится к нулю вследствие значительного разрежения воздуха в прослойке.

В строительных конструкциях с воздушными прослойками передача теплоты излучением

значительно сокращается при покрытии излучающих поверхностей алюминием, имеющим малый коэффициент излучения С = 0,26 Вт/(м 2 К 4). Передача теплоты теплопроводностью при обычных разрежениях воздуха не зависит от его давления, и только при разрежении ниже 200 Па коэффициент теплопроводности воздуха начинает уменьшаться

В порах строительных материалов передача теплоты происходит так же, как и в воздушных прослойках Вот почему коэффициент теплопроводности воздуха в порах материала имеет различные значения в зависимости от размеров пор. Повышение теплопроводности воздуха в порах материала при повышении температуры происходит, главным образом, вследствие увеличения теплопередачи излучением.

При проектировании наружных ограждений с воздушными прослойками необходимо

учитывать следующее:

1) эффективными в теплотехническом отношении являются прослойки небольшой

2) при выборе толщины воздушных прослоек желательно учитывать, чтобы λ э воздуха в них не был больше коэффициента теплопроводности материала, которым можно было бы заполнить прослойку; обратный случай может быть, если это оправдывается экономическими соображениями;

3) рациональнее делать в ограждающей конструкции несколько прослоек малой

толщины, чем одну большой толщины;

4) воздушные прослойки желательно располагать ближе к наружной стороне ограждения,

т. к. при этом в зимнее время уменьшается количество теплоты, передаваемой излучением;

5) воздушная прослойка должна быть замкнутой и не сообщаться с воздухом; если необходимость сообщения прослойки с наружным воздухом вызывается другими соображениями, как например, обеспечением бесчердачных покрытий от конденсации в них влаги, то это необходимо учитывать при расчете;

6) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными

диафрагмами на уровне междуэтажных перекрытий; более частое перегораживание прослоек по высоте практического значения не имеет;

7) для сокращения количества теплоты, передаваемой излучением, можно рекомендовать одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения С = 1,116 Вт/(м 2 К 4). Покрытие фольгой обеих поверхностей практически не уменьшает передачу теплоты.

Также в строительной практике нередко встречаются наружные ограждения, имеющие воздушные прослойки, сообщающиеся с наружным воздухом. Особенно большое распространение получили прослойки, вентилируемые наружным воздухом, в бесчердачных совмещенных покрытиях как наиболее эффективная мера борьбы с конденсацией в них влаги. При вентилировании воздушной прослойки наружным воздухом последний, проходя через ограждение, отнимает от него теплоту, увеличивая теплоотдачу ограждения. Это приводит к ухудшению теплозащитных свойств ограждения и повышению его коэффициента теплопередачи. Расчет ограждений с вентилируемой воздушной прослойкой проводится с целью определения температуры воздуха в прослойке и действительных величин сопротивления теплопередаче и коэффициента теплопередачи таких ограждений.

23.Конструктивные решения отдельных узлов зданий (оконные перемычки, откосы, углы, стыки и т.п.) с целью недопущения конденсации на внутренних поверхностях.

Дополнительное количество теплоты, теряемое через наружные углы, невелико по сравнению с полной теплопотерей наружных стен. Понижение же температуры поверхности стены в наружном углу особенно неблагоприятно с санитарно-гигиени­ ческой точки зрения как единственная причина отсыревания и промерзания наруж­ ных углов*. Это понижение температуры вызывается двумя причинами:

1) геометрической формой угла, т. е. неравенством площадей тепловосприятия и теплоотдачи в наружном углу; в то время как на глади стены площадь тешювоспри­ ятия F в равна площади теплоотдачи F н, в наружном углу площадь тепловосприятия F в оказывается меньше площади теплоотдачи F н; таким образом, наружный угол испытывает большее охлаждение, чем гладь стены;

2) уменьшением коэффициента α в тепловосприятия в наружном углу против гла­ ди стены в основном вследствие уменьшения передачи теплоты излучением, а также в результате понижения интенсивности конвекционных токов воздуха в наружном углу. Уменьшение величины α в увеличивает сопротивление тепловосприятию R в, а это оказывает влияние на понижение температуры наружного угла Ту.

При конструировании наружных углов необходимо принимать меры к повыше­ нию температуры на их внутренней поверхности, т. е. утеплять углы, что можно де­ лать следующими способами.

1. Скашиванием внутренних поверхностей наружного угла вертикальной плоскостью. При этом с внутренней стороны прямой угол разбивается на два тупых угла (рис. 50а). Ши­ рина скашивающей плоскости должна быть не менее 25 см. Это скашивание можно делать или тем же материалом, из которого состоит стена, или другим материалом с несколько меньшим коэффициентом теплопроводности (рис. 506). В последнем случае утепление уг­ лов можно делать независимо от возведения стен. Эта мера рекомендуется для утепления углов уже существующих зданий, если теп­ лотехнический режим этих углов оказывает­ ся неудовлетворительным (отсыревание или промерзание). Скашивание утла при ширине скашивающей плоскости 25 см снижает раз­ ность температур между гладью стены и наружным углом, по данным опыта, при­

мерно на 30 %.
Какое влияние оказывает утепление угла скашиванием, видно на примере 1,5-кир-

пичной стены опытного дома в Москве. При /н = -40 °С угол промерз (рис. 51).
В ребрах двух тупых углов, образованных пересечением плоскости скашивания с гранями прямого угла, промерзание поднялось на 2 м от пола; на самой же плоскости

скашивания это промерзание поднялось только до высоты около 40 см от пола, т. е. на середине плоскости скашивания температура поверхности оказалась более высокой, чем у ее примыкания к поверхности наружных стен. Если бы угол не был утеплен, то он промерз бы на всю высоту.

2. Скруглением наружного угла. Внутренний радиус скругления должен быть не менее 50 см. Скругле- ние угла можно делать как по обеим поверхностям угла, так и по одной его внутренней поверхности (рис. 50г).

В последнем случае утепление аналогично скашиванию угла и радиус скругления может быть уменьшен до 30 см.

В гигиеническом отношении скругление угла дает еще бо­ лее благоприятный результат, поэтому в первую очередь ре­ комендуется для лечебных и других зданий, к чистоте кото­ рых предъявляются повышенные требования. Скругление угла при радиусе 50 см снижает разность температур между

гладью стены и наружным углом примерно на 25 %.
3. Устройством на наружной поверхности угла утепля­ ющих пилястр (рис. 50д) - обычно в деревянных домах.

В брусчатых и рубленых домах эта мера имеет особенно
большое значение при рубке стен в лапу, в этом случае пи­
лястры защищают угол от излишней потери теплоты по тор­
цам бревен вследствие большей теплопроводности древеси­ ны вдоль волокон. Ширина пилястр, считая от наружной грани угла, должна быть не менее полуторной толщины стены. Пилястры должны иметь достаточное термичес­ кое сопротивление (ориентировочно не менее R = 0,215 м2 °С/Вт, что соответствует деревянным пилястрам из досок 40 мм). Дощатые пилястры на углах стен, рубленных в лапу, желательно ставить на слой утеплителя.

4. Установкой в наружных углах стояков разводящего трубопровода центрально­ го отопления. Эта мера наиболее эффективна, т. к. при этом температура внутренней поверхности наружного угла может стать даже выше температуры на гла­ ди стены. Поэтому при проектировании систем центрального отопления стояки раз­ водящего трубопровода, как правило, прокладываются во всех наружных углах зда­ ния. Стояк отопления повышает температуру в углу примерно на 6 °С при расчетной температуре наружного воздуха.

Карнизным узлом назовем узел примыкания чердачного перекрытия или совме­ щенного покрытия к наружной стене. Теплотехнический режим такого узла близок к теплотехническому режиму наружного угла, но отличается от него тем, что примы­ кающее к стене покрытие имеет более высокие теплозащитные качества, чем стена, а при чердачных перекрытиях температура воздуха на чердаке будет несколько выше температуры наружного воздуха.

Неблагоприятный теплотехнический режим карнизных узлов вызывает необ­ ходимость их дополнительного утепления в выстроенных домах. Это утепление приходится делать со стороны помещения, причем оно должно проверяться рас­ четом температурного поля карнизного узла, т. к. иногда излишнее утепление мо­ жет привести к отрицательным результатам.

Утепление более теплопроводными древесноволокнистыми плитами оказалось значительно эффективнее, чем малотеплопроводным пенополистиролом.

Аналогичным температурному режиму карнизного узла является режим цоколь­ ного узла. Понижение температуры в углу примыкания пола первого этажа к поверх­ ности наружной стены может оказаться значительным и приближаться к температуре в наружных углах.

Для повышения температуры пола первых этажей у наружных стен желательно повышать теплозащитные свойства пола по периметру здания. Необходимо также, чтобы цоколь имел достаточные теплозащитные качества. Это имеет особенно боль­ шое значение при полах, расположенных непосредственно на грунте или бетонной подготовке. В этом случае рекомендуется устройство за цоколем по периметру здания теплой отсыпки, например, шлаком.

Полы, укладываемые по балкам с подпольным пространством между конструк­ цией цокольного перекрытия и поверхностью земли, имеют более высокие тепло­ защитные свойства по сравнению с полом на сплошном основании. Плинтус, при­ биваемый к стенам у пола, утепляет угол между наружной стеной и полом. Поэтому в первых этажах зданий необходимо обращать внимание на повышение теплозащит­ ных свойств плинтусов, что может быть достигнуто увеличением их размеров и уста­ новкой на слое мягкого утеплителя.

Понижение температуры внутренней поверхности наружных стен крупнопанель­ ных домов наблюдается также против стыков панелей. В однослойных панелях это вызвано заполнением полости стыка более теплопроводным материалом, чем мате­ риал панели; в многослойных панелях -бетонными ребрами, окаймляющими па­ нель.

Для предупреждения конденсации влаги на внутренней поверхности вертикаль­ ных стыков панелей наружных стен домов серии П-57 используют прием повышения температуры путем замоноличивания стояка отопления в примыкающей к стыку пе­ регородке.

Недостаточное утепление наружных стен в междуэтажном поясе может вызвать значительное понижение температуры пола у наружных стен даже в кирпичных до­ мах. Это обычно наблюдается при утеплении наружных стен с внутренней стороны только в пределах помещения, а в междуэтажном поясе стена остается неутепленной. Повышенная воздухопроницаемость стен в междуэтажном поясе может привести к дополнительному резкому охлаждению междуэтажного перекрытия.

24.Теплоустойчивость наружных ограждающих конструкций и помещений.

Неравномерность отдачи теплоты приборами отопления вызывает колебания температуры воздуха в помещении и на внутренних поверхностях наружных ограж­ дений. Величины амплитуд колебания температуры воздуха и температур внутренних поверхностей ограждений будут зависеть не только от свойств отопительной системы, теплотехнических качеств его наружных и внутренних ограждающих конструкций, а также от оборудования помещения.

Теплоустойчивость наружного ограждения - это его способность давать большее или меньшее изменение температуры внутренней поверхности при колебании тем­ пературы воздуха в помещении или температуры наружного воздуха. Чем меньше из­ менение температуры внутренней поверхности ограждения при одной и той же амп­ литуде колебания температуры воздуха, тем оно более теплоустойчиво, и наоборот.

Теплоустойчивость помещения - это его способность уменьшать колебания тем­ пературы внутреннего воздуха при колебаниях теплового потока от отопительного прибора. Чем меньше при прочих равных условиях будет амплитуда колебания тем­ пературы воздуха в помещении, тем оно будет более теплоустойчивым.

Для характеристики теплоустойчивости наружных ограждений О. Е. Власовым было введено понятие коэффициента теплоустойчивости ограждения φ. Коэффициент φ есть отвлеченное число, представляющее собой отношение разности температур внутреннего и наружного воздуха к максимальной разности температур внутреннего воздуха ивнутренней поверхности ограждения. Величина φ будет зависеть от теплотехнических свойств ограждения, а также от системы отопления и ее эксплуатации
Для вычисления величины φ О. Е. Власовым дана следующая формула:

φ=R o /(R в +m/Y в)

где R о - сопротивление теплопередаче ограждения, м2 °С/Вт; R в - сопротивление тепловосприятию, м2 °С/Вт; Y в - коэффициент теплоусвоения внутренней поверхности ограждения, Вт/(м2 °С).

25.Потери теплоты на нагревание инфильтрующегося наружного воздуха через ограждающие конструкции помещений.

Затраты теплоты Q и Вт, для нагревания инфильтрующегося воздуха и помещениях жилых и общественных зданий при естественной вытяжной вентиляции, не ком­пенсируемого подогретым приточным воздухом, следует принимать равным большей из величин, рассчитанных согласно методике, по формулам:

Q и = 0,28ΣG i C (t в -t н) k;

G i =0.216(ΣF ок)×ΔP 2/3 /R i(ок)

где - ΣG i расход инфильтруюшегося воздуха, кг/ч, через огражда­ющие конструкции помещения, с - удельная теплоемкость воздуха, равная 1 кДж/(кг-°С); t в,t н - расчетные температуры воздуха в помещении н наружного воздуха в холодный период года, С; k - коэффи­циент, учитывающий влияние встречного теплового потока в конст­рукциях, равный: 0,7 - для стыков панелей стен, для окон с тронны­ми переплетами, 0,8 - для окон и балконных дверей с раздельными переплетами и 1,0 -для одинарных окон, окон и балконных дверей со спаренными переплетами и открытых проемов; ΣF ок – вся площадь, м; ΔP – расчетная разность давлений на расчетном этаже, Па; R i(ок) – сопротивление паропроницанию м 2 ×ч×Па/мг

Подсчитанные для каждого помещения расходы теп­лоты на нагревание инфильтрующегося воздуха следует добавить к теплопотерям этих помещений.

Для поддержания расчетной температуры воздуха по­мещении система отопления должка компенсировать теп­лопотери помещения. Однако следует иметь в виду, что кроме теплопотерь в помещении могут быть дополни­тельные расходы теплоты: на нагревание поступающих в помещение холодных материалов и въезжающего тран­спорта.

26.потери теплоты через ограждающие конструкции помещения

27.Расчетные теплопотери помещения.

Каждая система отопления предназначена для созда­ния в колодный период года в помещениях здания задан­ной температуры воздуха, соответствующей комфортным условиям и отвечающей требованиям технологического процесса. Тепловой режим в зависимости от назначения помещений может быть как постоянным, так и перемен­ным.

Постояннын тепловой режим должен поддерживать­ся круглосуточно в течение всего отопительного периода в зданиях: жилых, производственных с непрерывным ре­жимом работы, детских и лечебных учреждений, гости­ниц, санаториев и т. и.

Неременный тепловой режим характерен для произ­водственных зданий с одно- и двухсменной работой, а также для ряда общественных зданий (административ­ные, торговые, учебные и т. п.) и зданий предприятий обслуживания населения. В помещениях этих зданий не­обходимые тепловые условия поддерживают только в ра­бочее время. В нерабочее время используют либо имею­щуюся систему отопления, либо устраивают дежурное отопление, поддерживающее в помещении пониженную температуру воздуха. Если в рабочее время тенлопосту- пления превышают потери теплоты, то устраивают толь­ко дежурное отопление.

Теплопотери в помещении складываются из потерь через ограждающие конструкции (учитывается ориентация конструкции по концам света) и из расхода тепла на нагревание наружного холодного воздуха, поступающего в помещение для его вентиляции. Кроме того учитываются теплопоступления в помещение от людей и электробытовых приборов.

Дополнительный расход тепла для нагревания наружного холодного воздуха поступающего в помещение для его вентиляции.

Дополнительный расход тепла на нагревания наружного воздуха поступающего в помещение путем инфильтрации.

Теплопотери через ограждающие конструкции.

Поправочный коэффициент учитывающий ориентацию по сторонам света.

n - коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху

28.Виды нагревательных приборов.

Отопительные приборы, применяемые в системах цен­трального отопления, подразделяются: по преобладаю­щему способу теплоотдачи - на радиационные (подвес­ные панели), конвективно-радиационные (приборы с глад­кой внешней поверхностью) и конвективные (конвекторы с ребристой поверхностью и ребристые трубы); по виду материала - на приборы металлические (чугунные из серого чугуна и стальные из листовой стали и стальных труб), малометаллические (комбинированные) и неме­таллические (керамические радиаторы, бетонные панели с заделанными стеклянными или пластмассовыми труба­ми или с пустотами, вообще без труб и др.); по характеру внешней поверхности - на гладкие (радиаторы, панели, гладкотрубные приборы), ребристые (конвекторы, реб­ристые трубы, калориферы).

Радиаторы чугунные и стальные штампованные. Про­мышленность выпускает секционные и блочные чугунные радиаторы. Секционные радиаторы собирают из отдель­ных секций, блочные - из блоков. Производство чугунных радиаторов требует большого расхода металла, они трудоемки в изготовлении и монтаже. При этом усложняется изготовление панелей вследствие устройства в них ниши для установки радиа­торов, Кроме того, производство радиаторов приводит к загрязнению окружающей среды. Изготовляют однорядные и двухрядные сталь­ные панельные радиаторы: штампованные колончатые типа РСВ1 и штампованные змеевиковые типа РСГ2

Ребристые трубы. Ребристые трубы изготовляют чу­гунными длиной 0,5; 0,75; I; 1,5 и 2 м с круглыми ребра­ми и поверхностью нагрева 1; 1,5; 2; 3 и 4 м 2 (рис. 8.3). На концах трубы предусмотрены фланцы для присоеди­нения их к фланцам теплопровода системы отопления. Оребренность прибора увеличивает теплоотдающую по­верхность, но затрудняет очистку его от пыли и понижает коэффициент теплопередачи. Ребристые трубы в помеще­ниях с продолжительным пребыванием людей не уста­навливают.

Конвекторы. В последние годы стали широко приме­няться конвекторы - отопительные приборы, передаю­щие теплоту в основном конвективным путем.

29.классификация отопительных приборов.требования предевляемые к ним.

30.Расчет необходимой поверхности отопительных приборов.

Целью отопления является компенсация потерь каждого обогреваемого помещения для обеспечения в нем расчетной температуры. Система отопления представляет собой комплекс инженерных устройств, обеспечивающих выработку тепловой энергии и передачи ее в каждое обогреваемое помещение в требуемом количестве.

– температура подоваемой воды, равная 90 0 С;

– температура обратной воды, равная 70 0 С.

Все расчеты в таблице 10.

1) Определяем общую тепловую нагрузку на стояк:

, Вт

2) Количество теплоносителя, проходящего через стояк:

Gст=(0,86* Qст)/(tг- tо), кг/ч

3) Коэффициент затекания в однотрубной системе α=0,3

4) Зная коэффициент затекания, можно определить количество теплоносителя, проходящий через каждый нагревательный прибор:

Gпр= Gст*α, кг/ч

5) Определяем температурный напор для каждого прибора:

где Gпр – расход теплопотери через прибор,

– полная теплопотеря данного помещения

6) Определяем температуры теплоносителя в нагревательном приборе на каждом этаже:

tвх = tг - ∑ Qпр/ Qст(tг- tо) , 0 С

где ∑Qпр – теплопотери всех предшествующих помещений

7) Температура теплоносителя на выходе из прибора:

tвых= tвх- Δtпр, 0 С

8) Определяем среднюю температуру теплоносителя в отопительном приборе:

9) Определяем температурный напор между средней температурой теплоносителя в приборе и температурой окружающего воздуха

10) Определяем требуемую теплоотдачу одной секции отопительного прибора:

где Qну- номинальный условный тепловой поток, т.е. количество тепла в Вт, отданное одной секцией отопительного прибора МС-140-98. Qну=174 Вт.

Если расход теплоносителя через прибор G находится в пределах 62..900, то коэффициент с=0,97 (коэффициент учитывает схему подключения отопительных приборов). Коэффициенты n, p выбираются из справочника в зависимости от вида отопительного прибора, расхода теплоносителя в нём и схемы подачи теплоносителя в прибор.

Для всех стояков принимаем n=0,3 , p=0 ,

Для третьего стояка принимаем c=0,97

11) Определяем требуемое минимальное количество секций отопительных приборов:

N= (Qпр/(β3* ))*β4

β 4 – коэффициент, учитывающий способ установки радиатора в помещении.

Радиатор установленный под подоконником с декоративной защитной решёткой установленной с лицевой стороны = 1,12 ;

радиатор с декоративной защитной решёткой установленной с лицевой стороны и свободной верхней частью = 0,9 ;

радиатор установленный в нише стены и свободной лицевой частью = 1,05 ;

радиаторы расположенные друг над другом = 1,05.

Принимаем β 4 =1,12

β 3 – коэффициент, учитывающий число секций в одном радиаторе

3 - 15 секций = 1 ;

16 - 20 секций = 0,98 ;

21 - 25 секций = 0,96.

Принимаем β 3 =1

Т.к. требуется установка 2 –х отопительных приборов в помещении, то распределяем Q приб 2/3 и 1/3 соответственно

Рассчитываем количество секций для 1-ого и 2-ого отопительного прибора

31.Основные факторы, определяющие величину коэффициента теплопередачи нагревательного прибора.

Коэффициент теплопередачи отопительного прибора

Основными факторами, определяющими величину k являются: 1) вид и конструктивные особенности, приданные типу прибора при его разработке; 2) температурный напор при эксплуатации прибора

Среди второстепенных факторов, влияющих на коэф­фициент теплопередачи приборов систем водяного отопле­ния, прежде всего укажем на расход воды G np , включен­ный в формулу.В зависимости от расхода воды из­меняются скорость движения w и режим течения воды в приборе, т. е. условия теплообмена на его внутренней поверхности. Кроме того, изменяется равномерность тем­пературного поля на внешней поверхности прибора.

На коэффициент теплопередачи влияют также следую­щие второстепенные факторы:

а) скорость движения воздуха v у внешней поверхности прибора.

б) конструкция ограждения прибора.

в) расчетное значение атмосферного давления, установленное для места расположения здания

г) окраска прибора..

На значении коэффициента теплопередачи сказываются также качество обработки внешней поверхности, загряз­ненность внутренней поверхности, наличие воздуха в при­борах и другие эксплуатационные факторы.

32Виды систем отопления. Области применения.

Системы отопления: виды, устройство, выбор

Одной из важнейших составляющих инженерного обеспечения являетсяотопление.

Важно знать, что хорошим показателем работы системы отопления является способность системы поддерживать комфортную температуру в доме при температуре теплоносителя низкой настолько, насколько это возможно, тем самым затраты на эксплуатацию системы отопления сводятся к минимуму.

Все отопительные системы, с использованием теплоносителя, делятся на:

· системы отопления с естественной циркуляцией (гравитационная система), т.е. движение теплоносителя внутри замкнутой системы возникает за счет разницы веса горячего теплоносителя в подающей трубе (вертикальном стояке большого диаметра) и холодного - после остывания в приборах и обратном трубопроводе. Необходимое оборудование для этой системы – это расширительный бак открытого типа, который устанавливается в самой верхней точке системы. Довольно часто он же используется для заполнения и подпитки системы теплоносителем.

· система отопления с принудительной циркуляцией основана на действии насоса, который заставляет двигаться теплоноситель, преодолевая сопротивление в трубах. Такой насос называется циркуляционным и позволяет отапливать большое количество помещений с разветвленной системы труб и радиаторов, когда разница температур на входе и выходе не обеспечивает достаточную силу теплоносителю, чтобы преодолеть всю сеть. К необходимому оборудованию, используемому при этой системе отопления, стоит отнести расширительный мембранный бак, циркуляционный насос, группу безопасности.

Первый вопрос, который следует изучить при выборе системы отопления, - какой источник энергии будет использоваться: твердое топливо (уголь, дрова и др.); жидкое топливо (мазут, солярка, керосин); газ; электричество. Топливо является основой для выбора отопительного оборудования и расчета общих затрат при максимальном наборе других показателей. Расход топлива загородных домов существенно зависит от материала и конструкции стен, объема дома, режима его эксплуатации и возможности системы отопления по управлению температурными характеристиками. Источником тепла в коттеджах являются одноконтурные (только для отопления) и двухконтурные (отопления и горячее водоснабжение) котлы.

  • Административно-территориальное устройство Челябинской области: понятие, виды административно-территориальных единиц, населенных пунктов
  • Анализ валового производства молока в ОАО «Семьянское» Воротынского района Нижегородской области

  • Зазоры, доступные потокам воздуха, являются продухами, ухудшающими теплоизоляционные характеристики стен. Зазоры же замкнутые (так же как закрытые поры вспененного материала) являются теплоизолирующими элементами. Ветронепродуваемые пустоты широко применяются в строительстве для снижения теплопотерь через ограждающие конструкции (щели в кирпичах и блоках, каналы в бетонных панелях, зазоры в стеклопакетах и т. п.). Пустоты в виде непродуваемых воздушных прослоек используются и в стенах бань, в том числе каркасных. Эти пустоты зачастую являются основными элементами теплозащиты. В частности, именно наличие пустот с горячей стороны стены позволяет использовать легкоплавкие пенопласты (пенополистирол и пенополиэтилен) в глубинных зонах стен высокотемпературных бань.

    В то же время пустоты в стенах являются самыми коварными элементами. Стоит в малейшей степени нарушить ветроизоляцию, и вся система пустот может стать единым продуваемым выхолаживающим продухом, выключающим из системы теплоизоляции стен все внешние теплоизоляционные слои. Поэтому пустоты стараются делать небольшими по размеру и гарантированно изолируют друг от друга.

    Использовать понятие теплопроводности воздуха (а тем более использовать ультранизкое значение коэффициента теплопроводности неподвижного воздуха 0,024 Вт/м град) для оценки процессов теплопередачи через реальный воздух невозможно, поскольку воздух в крупных пустотах является крайне подвижной субстанцией. Поэтому на практике для теплотехнических расчётов процессов передачи тепла даже через условно «неподвижный» воздух применяют эмпирические (опытные, экспериментальные) соотношения. Чаще всего (в простейших случаях) в теории теплопередачи считается, что тепловой поток из воздуха на поверхность тела в воздухе равен Q = α∆Т , где α - эмпирический коэффициент теплопередачи «неподвижного» воздуха, ∆Т - разность температур поверхности тела и воздуха. В обычных условиях жилых помещений коэффициент теплопередачи равен ориентировочно α = 10 Вт/м² град. Именно этой цифры мы будем придерживаться при оценочных расчётах прогрева стен и тела человека в бане. При помощи потоков воздуха со скоростью V (м/сек), тепловой поток увеличивается на величину конвективной составляющей Q=βV∆T , где β примерно равен 6 Вт сек/м³ град . Все величины зависят от пространственной ориентации и шероховатости поверхности. Так, по действующим нормам СНиП 23-02-2003 коэффициент теплопередачи от воздуха к внутренним поверхностям ограждающих конструкций принимается равным 8,7 Вт/м² град для стен и гладких потолков со слабо выступающими рёбрами (при отношении высоты рёбер «h» к расстоянию «а» между гранями соседних рёбер h/a < 0,3); 7,6 Вт/м² град для потолков с сильно выступающими рёбрами (при отношении h/a > 0,3); 8,0 Вт/м² град для окон и 9,9 Вт/м² град для зенитных фонарей. Финские специалисты принимают коэффициент теплопередачи в «неподвижном» воздухе сухих саун равным 8 Вт/м² град (что в пределах ошибок измерений совпадает с принимаемым нами значением) и 23 Вт/м² град при наличии потоков воздуха со скоростью в среднем 2 м/сек.

    Столь малое значение коэффициента теплопередачи в условно «неподвижном» воздухе α = 10 Вт/м² град соответствует понятию воздуха как теплоизолятора и объясняет необходимость использования высоких температур в саунах для быстрого согрева тела человека. Применительно же к стенам это означает, что при характерных теплопотерях через стены бани (50- 200) Вт/м² разница температур воздуха в бане и температур внутренних поверхностей стен бани может достигать (5-20)°С. Это очень большая величина, часто никак и никем не учитывающаяся. Наличие в бане сильной конвекции воздуха позволяет снизить перепад температуры вдвое. Отметим, что столь высокие перепады температур, характерные для бань, недопустимы в жилых помещениях. Так, нормируемый в СНиП 23-02-2003 температурный перепад между воздухом и стенами не должен превышать 4°С в жилых помещениях, 4,5°С в общественных и 12°С в производственных. Более высокие перепады температур в жилых помещениях неминуемо приводят к ощущениям холода от стен и выпадению росы на стенах.

    Используя введенное понятие коэффициента теплопередачи от поверхности в воздух, пустоты внутри стены можно рассматривать как последовательное расположение теплопередающих поверхностей (см. рис. 35). Пристеночные зоны воздуха, где и наблюдаются вышеуказанные перепады температур ∆T, называются пограничными слоями. Если в стене (или стеклопакете) имеются два пустотных промежутка (например, три стекла), то фактически имеется 6 пограничных слоев. Если через такую стену (или стеклопакет) проходит тепловой поток 100 Вт/м², то на каждом пограничном слое температура изменяется на ∆T = 10°С , а на всех шести слоях перепад температуры составляет 60°С. Учитывая, что тепловые потоки через каждый в отдельности пограничный слой и через всю стену в целом равны между собой и составляют всё же 100 Вт/м², то результирующий коэффициент теплопередачи для стены без пустот («стеклопакет» с одним стеклом) составит 5 Вт/м² град, для стены с одной пустотной прослойкой (стеклопакет с двумя стёклами) 2,5 Вт/м² град, а с двумя пустотными прослойками (стеклопакет с тремя стёклами) 1,67 Вт/м² град. То есть, чем больше пустот (или чем больше стёкол), тем теплей стена. При этом теплопроводность самого материала стен (стёкол) в этом расчёте предполагалась бесконечно большой. Иными словами, даже из очень «холодного» материала (например, стали) можно в принципе изготовить очень тёплую стену, предусмотрев лишь наличие в стене множества воздушных прослоек. Собственно, на этом принципе и работают все стеклянные окна.

    Для упрощения оценочных расчётов удобней использовать не коэффициент теплопередачи α, а его обратную величину - сопротивление теплопередаче (термическое сопротивление пограничного слоя) R = 1/ α . Термическое сопротивление двух пограничных слоев, отвечающее одному слою материала стены (одного стекла) или одному воздушному промежутку (прослойке), равно R = 0,2 м² град/Вт , а трёх слоев материала стены (как на рисунке 35) - сумме сопротивлений шести пограничных слоев, то есть 0,6 м² град/Вт. Из определения понятия сопротивления теплопередаче Q =∆T/R следует, что при том же тепловом потоке 100 Вт/м² и термическом сопротивлении 0,6 м² град/Вт перепад температуры на стене с двумя воздушными прослойками составит те же 60°С. Если же число воздушных прослоек увеличить до девяти, то перепад температуры на стене при том же тепловом потоке 100 Вт/м² составит 200°С, то есть расчётная температура внутренней поверхности стены в бане при тепловом потоке 100 Вт/м² повысится с 60 °С до 200°С (если на улице 0°С).

    Коэффициент теплопередачи является результирующим показателем, комплексно суммирующим последствия всех физических процессов, происходящих в воздухе у поверхности теплоотдающего или тепловоспринимающего тела. При малых перепадах температур (и малых тепловых потоках) конвективные потоки воздуха малы, теплопередача в основном происходит кондуктивно за счёт теплопроводности неподвижного воздуха. Толщина пограничного слоя составляла бы малую величину, всего лишь a=λR=0,0024 м, где λ=0,024 Вт/м град - коэффициент теплопроводности неподвижного воздуха, R=0,1 м²град/Вт -термическое сопротивление пограничного слоя. В пределах пограничного слоя воздух имеет разные температуры, вследствие чего за счёт гравитационных сил воздух у горячей вертикальной поверхности начинает всплывать (а у холодной - погружаться), набирая скорость, и турбулизируется (взвихривается). За счёт вихрей теплопередача воздуха увеличивается. Если вклад этой конвективной составляющей формально ввести в значение коэффициента теплопроводности λ, то увеличение этого коэффициента теплопроводности будет отвечать формальному увеличению толщины пограничного слоя a=λR (как мы увидим ниже, примерно в 5-10 раз с 0,24 см до 1-3 см). Ясно, что это формально увеличенная толщина пограничного слоя корреспондируется с размерами воздушных потоков и вихрей. Не углубляясь в тонкости структуры пограничного слоя, отметим, что значительно большее значение имеет понимание того, что передающееся в воздух тепло может «улететь» вверх с конвективным потоком, так и не достигнув следующей пластины многослойной стены или следующего стекла стеклопакета. Это отвечает случаю калориферного нагрева воздуха, который будет рассмотрен ниже при анализе экранированных металлических печей. Здесь же мы рассматриваем случай, когда воздушные потоки в прослойке имеют ограниченную высоту, например, в 5-20 раз превышающую толщину прослойки δ. При этом в воздушных прослойках возникают циркуляционные потоки, которые фактически участвуют в переносе тепла совместно с кондуктивными потоками тепла.

    При малых толщинах воздушных прослоек встречные потоки воздуха у противоположных стенок зазора начинают влиять друг на друга (перемешиваются). Иными словами, толщина воздушной прослойки становится меньше двух невозмущенных пограничных слоев, вследствие чего коэффициент теплопередачи увеличивается, а сопротивление теплопередачи соответственно уменьшается. Кроме того, при повышенных температурах стенок воздушных прослоек начинают играть роль процессы теплопередачи излучением. Уточнённые данные в соответствии с официальными рекомендациями СНиП П-3-79* приводятся в таблице 7, откуда видно, что толщина невозмущенных пограничных слоев составляет 1-3 см, но существенное изменение теплопередачи наступает лишь при толщинах воздушных прослоек менее 1 см. Это означает, в частности, что воздушные промежутки между стёклами в стеклопакете не следует делать толщиной менее 1 см.

    Таблица 7. Термическое сопротивление замкнутой воздушной прослойки, м² град/Вт

    Толщина воздушной прослойки, см для горизонтальной прослойки при потоке тепла снизу вверх или для вертикальной прослойки для горизонтальной прослойки при потоке тепла сверху вниз
    при температуре воздуха в прослойке
    положительной отрицательной положительной отрицательной
    1 0,13 0,15 0,14 0,15
    2 0,14 0,15 0,15 0,19
    3 0,14 0,16 0,16 0,21
    5 0,14 0,17 0,17 0,22
    10 0,15 0,18 0,18 0,23
    15 0,15 0,18 0,19 0,24
    20-30 0,15 0,19 0,19 0,24

    Их таблицы 7 также следует, что более тёплые воздушные прослойки имеют более низкие термические сопротивления (лучше пропускают через себя тепло). Это объясняется влиянием на теплоперенос лучистого механизма, который мы рассмотрим в следующем разделе. Отметим при этом, что вязкость воздуха растёт с температурой, так что тёплый воздух турбулизуется хуже.


    Рис. 36. . Обозначения те же, что и на рисунке 35. За счёт низкой теплопроводности материала стенок возникают перепады температур ∆Тc = QRc , где Rc - термическое сопротивление стенки Rc = δc / λc (δc - толщина стенки, λc - коэффициент теплопроводности материала стенки). При увеличении с перепады температур ∆Тc уменьшаются, но перепады температур на пограничных слоях ∆Т сохраняются неизменными. Это иллюстрируется распределением Твнутр, относящимся к случаю более высокой теплопроводности материала стенок. Тепловой поток через всю стену Q = ∆T/R = ∆Тc/Rc = (Твнутр - Tвнешн) /(3Rc+6R) . Термическое сопротивление пограничных слоев R и их толщина а не зависят от теплопроводности материала стенок λc и их термического сопротивления Rc.
    Рис. 37. : а - три слоя металла (или стекла), отстоящих друг от друга с зазорами по 1,5 см, эквивалентны древесине (деревянной доске) толщиной 3,6 см; б - пять слоев металла с зазорами по 1,5 см, эквивалентны древесине толщиной 7,2 см; в - три слоя фанеры толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 4,8 см; г - три слоя пенополиэтилена толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 7,8 см; д - три слоя металла с зазорами по 1,5 см, заполненными эффективным утеплителем (пенополистиролом, пенополиэтиленом или минватой), эквивалентны древесине толщиной 10,5 см. Принятая величина зазоров является условной, эквивалентные толщины древесины в примерах а-г слабо изменяются при изменении величины зазоров в пределах (1-30) см.

    Если конструкционный материал стены обладает низкой теплопроводностью, то при расчётах необходимо учитывать его вклад в теплосопротивление стены (рис. 36). Хотя вклад пустот, как правило, является значительным, заполнение всех пустот эффективным утеплителем позволяет (за счёт полной остановки движения воздуха) существенно (в 3-10 раз) повысить тепловое сопротивление стены (рис. 37).

    Сама по себе возможность получения вполне пригодных для бань (по крайней мере, летних) тёплых стен из нескольких слоев «холодного» металла, конечно же, интересна и используется, например, финнами для противопожарной защиты стен в саунах около печи. На практике, однако, такое решение оказывается весьма сложным ввиду необходимости механической фиксации параллельных слоев металла многочисленными перемычками, которые играют роль нежелательных «мостиков» холода. Так или иначе, даже один слой металла или ткани «греет», если не продувается ветром. На этом явлении основаны палатки, юрты, чумы, которые, как известно, до сих пор используются (и использовались веками) в качестве бань в кочевых условиях. Так, один слой ткани (всё равно какой, лишь бы непродуваемой) лишь в два раза «холодней» кирпичной стены толщиной 6 см, а прогревается в сотни раз быстрее. Тем не менее, ткань палатки остаётся намного холодней воздуха в палатке, что не позволяет реализовать сколько бы то ни было длительных паровых режимов. К тому же, любые (даже мелкие) порывы ткани сразу же приводят к мощным конвективным теплопотерям.

    Наибольшее значение в бане (так же как и в жилых зданиях) имеют воздушные прослойки в окнах. При этом приведённое сопротивление теплопередаче окон измеряется и рассчитывается на всю площадь оконного проёма, то есть не только на стеклянную часть, но и на переплёт (деревянный, стальной, алюминиевый, пластиковый), который, как правило, имеет лучшие теплоизолирующие характеристики, чем стекло. Для ориентировки приведём нормативные значения термического сопротивления окон разных типов по СНиП П-3-79* и сотовых материалов с учётом теплового сопротивления внешних пограничных слоев внутри и вне помещения (см. таблицу 8).

    Таблица 8. Приведенное сопротивление теплопередаче окон и оконных материалов

    Тип конструкции Сопротивление теплопередаче, м² град/Вт
    Одинарное остекление 0,16
    Двойное остекление в спаренных переплётах 0,40
    Двойное остекление в раздельных переплётах 0,44
    Тройное остекление в раздельно-спаренных переплётах 0,55
    Четырёхслойное остекление в двух спаренных переплётах 0,80
    Стеклопакет с межстекольным расстоянием 12 мм: однокамерный 0,38
    двухкамерный 0,54
    Блоки стеклянные пустотные (с шириной швов 6 мм) размером: 194x194x98 мм 0,31
    244x244x98 мм 0,33
    Поликарбонат сотовый «Акууег» толщиной: двухслойный 4 мм 0,26
    двухслойный 6 мм 0,28
    двухслойный 8 мм 0,30
    двухслойный 10 мм 0,32
    трёхслойный 16 мм 0,43
    многоперегородчатый 16 мм 0,50
    многоперегородчатый 25 мм 0,59
    Полипропилен сотовый «Акувопс!» толщиной: двухслойный 3,5 мм 0,21
    двухслойный 5 мм 0,23
    двухслойный 10 мм 0,30
    Брусовая стена (для сравнения) толщиной: 5 см 0,55
    10 см 0,91