Способы уменьшения потерь тепла в доме. Сравнение теплопотерь домов из разного материала. Распределение потерь тепла в доме

Внешняя

Статья про то как сделать Ваш дом максимально теплым и энергонезависимым.

При проектирование дома, кроме удобства, прочности и красоты, на первый план выходят его энергосберегающие свойства. И очень желательно еще до начала строительства оценить свои расходы на его обслуживание.

Эталоном к которому следует стремится в плане энергоэкономии мы принимаем стандарт «пассивного дома», как наиболее требовательный и поддерживаемый всем миром.

Его основные критерии -- это герметичность здания и годовое потребление энергии на отопление < 15 (кВт/(м²·K*год)

Для сравнения:

Максимально допустимое значение энергопотребления на отопление для европейских домов - 120 (кВт/(м²·K*год) (2017 год)

В Украине дом из газобетона 375 мм со стандартным утепление пола 1го этажа и чердака потребляет - 156 (кВт/(м²·K*год)

Так как же оптимизировать проект с точки зрения энергосбережения?

Как пример для оптимизации мы взяли проект «Маша» 132 м2 (как один из самых популярных)

Мы разбили процесс минимизации энергопотребления при проектировании на 6 этапов:

Этап 1: Получение исходных данных энергопотребления в базовом проекте.

1. Расход энергии на отопление 156 (кВт/(м²·K*год) или 21404(кВт/год)

2. На горячее водоснабжение семьей из четырех человек тратится еще 5164 (кВт/год)

Годовые расходы на отопление и ГВС при использовании газа (по 6,6 грн/м3) будут составлять - 22919 грн/год.

Энергосберегающие технологии не применяются.

Этап 2: Утепляем дом и проверяем энергопотребление.

Увеличиваем утепление дома по европейским нормам (а) и нормам ""пассивного дома"" (б).

Также дом должен быть максимально изолирован от утечек тепла.

вариант (а): расходы на отопление - 97 (кВт/(м²·K*год), то есть на отопление и ГВС 9 603 грн/год.

(тариф для газа уже меньше так как мы потребляем его мало)

вариант (б): расходы на отопление - 72 (кВт/(м²·K*год), то есть на отопление и ГВС 7128 грн/год или около 600 грн/мес (по ценам 2017 года)

При расчете балансов теплопотерь и поступлений дома видно что наибольшее количество тепла теперь теряется через окна и вентиляцию. (эти данные есть в полном отчете по улучшению энергосбережения)

Этап 3: Находим оптимальное размещение дома на участке по сторонам света для увеличения поступления тепла через окна.

Последовательно поворачиваем дом по часовой стрелке с шагом 90° и проверяем теплопоступления и теплопотери через окна.

Начинаем с Варианта 1 - это то как бы мы поставили дом не обращая внимание на солнце.

Самый оптимальный вариант с точки зрения энергосбережения это Вариант №5.

Но он далеко не оптимальный с точки зрения удобства для жизни.

Этап 4: Корректируем планы этажей для повышения удобства.

Проверяем теплопотери и теплопоступления через окна.

После корректировки проекта мы стали получать через окна больше солнечной энергии днем чем терять ночью.

Размещение на участке и планировка дома удобны для пользования.

Теперь тратится на отопление и ГВС - 5579 грн/год.

Теперь в энергетическом балансе остался нерешенный вопрос с вентиляцией.

Этап 5: Используем энергосберегающие технологии. Оптимизируем вентиляцию и увеличиваем солнечную составляющую для получения энергии.

1. Заменяем естественную систему вентиляции на вентиляцию с рекуперацией тепла и грунтовым теплообменником.

2. Оптимизируем кровлю для размещения гелиосистемы для горячего водоснабжения и размещения фотоэлектрических модулей.

3. Применяем энергоэффективную отопительную и бытовую технику.

При использовании южного ската кровли для размещения фотоэлектрических модулей мы можем производить 8600 кВт/ч*год.

Что в 1,42 раза перекрывает потребности семьи. Излишек можно продавать в сеть по зеленому тарифу. В таком случае срок окупаемости вложений составит около - 7 лет.

Результаты после оптимизации:

расходы на отопление - 29 (кВт/(м²·K*год) то есть в 5,4 раза меньше чем было.

Этап 6: Окончательная доводка. Стараемся сделать дом ""пассивным"".

Для этого:

а) Увеличиваем толщины утеплителей. Применяем, сертифицированные институтом пассивного дома, окна со стеклопакетами и рекуперационную установку вентиляции. Уменьшаем потребление горячей воды до европейских норм.

б) Оптимизируем размеры окон и солнцезащиту.

В результате: расходы на отопление - 16 (кВт/(м²·K*год)) , на ГВС и жизнедеятельность еще 37 (кВт/(м²·K*год)) то есть на отопление и ГВС 8 961 грн/год.

До норм «пассивного дома» немного не дотянули:-(. Это связано с более жесткими, чем в Германии, климатическими условиями.

1. До норм пассивного дома не дотянули на 1кВт.

2. Но дом стал солнечным, т.е. для обогрева мы получаем тепла от солнца больше чем от системы отопления.

3. В Украине, в данное время, строительство полностью пассивного дома все более оправдано

4. Стоимость энергоносителей непрерывно растет а их количество уменьшается. Поэтому проверять рациональность нужно постоянно.

5. Также следим за новыми технологиями и экономическим инициативами по поддержке “зеленого” строительства.

В 2017 году нами разработан проект полностью пассивного дома ""Пассивный"" его можно посмотреть -> тут.

Помните! То, что долго окупается сегодня -- может быстро окупиться завтра.

Сравним затрат на отопление и горячее водоснабжение разными видами топлива для энергоэффективного дома 132 м2:

1. При использовании электричества напрямую (электро-конвекторы)- 8961 грн/год.

2. При использовании газа - 6207 грн/год (в зависимости от котла)

3. При использовании теплового насоса - 4500 грн (в зависимости от типа)

4. При использовании котла на твердом топливе - 1800 грн/год на отопление + электрика на жизнедеятельность около 2400 грн

5. При использовании деревянных пелет - 6057 грн/год

Если Вы решили строить пассивный дом или максимально уменьшить расход энергии в выбранном проекте, обращайтесь к нам и мы поможем Вам провести нужные расчеты и оптимизировать Ваш проект.

P.S. В Европе (Австрия) цена на электроснабжение - 2,1-3 грн/кВт, стоимость 1м3 газа - 15 грн. (в пересчете на грн 13.10.2017)

Так как Украина вышла на общеевропейский рынок энергии то такие цены в Украине не за горами. Можно точно спрогнозировать рост цен на 30-50% ежигодно.

Экономия на энергоресурсах приобретает все большую значимость. И не только потому, что частные дома в последнее время все больше по площади, следовательно, и по теплопотерям. Главная причина в том, что на правительственном уровне нам обещают цены на энергоносители в скором будущем такие же, как в Европе.

А там занимаются экономией энергии весьма тщательно… Вводят законы направленные на энергосбережение, например предусматривающие строительство лишь энергоэкономичных домов и применение только конденсационных котлов (с вторичным теплообменником)…

Следовательно, в нашем климате вопрос энергосбережения должен стать еще более существенным, чем в странах запада.
Отсюда задача строить действительно энергосберегающий дом уже сейчас. Или добиваться таких качеств путем проведения ремонта.
Что нужно сделать для лучшей экономии тепла?

Как нормативы регламентируют теплопотери

Окна, двери, крыша, стены…. — все это ограждающие конструкции. У каждой из них свое сопротивление теплопередаче. Через каждую проходит какое-то количество тепла, которое зависит от указанного сопротивления, площади, разности температур и др.

Нормативом регламентируется для каждой ограждающих конструкций дома определенное сопротивление теплопередаче, в зависимости от количества градусо-суток, т.е. от региона проживания.

Также указываются максимальные возможные удельные теплопотери за отопительный сезон.

При этом в нормативе указывается, что сопротивление теплопередаче отдельных ограждающих конструкций могут быть ниже требований, если это целесообразно экономически, но суммарные теплопотери при этом не должны превышать нормативных.

В каждом конкретном случае предлагается проверять экономическую целесообразность тех или иных решений по теплосбережению, и отыскивать наиболее экономичное решение в зависимости от региона, цен на топливо и др.

Теплые стены целесообразно не утеплять

Действительно, зачастую доутеплять стены, которые «теплые» сами по себе, до нормативных требований, весьма затратно. Например, однослойная стена из поризованной керамики может иметь сопротивление теплопередаче немногим меньше чем нормативное значение.

Доутепление слоем минеральной ваты толщиной 3 — 5 см потребует больших дополнительных затрат, уменьшит надежность, долговечность конструкции.

Оказывается, что экономически выгодней в данном проекте достичь требований по энергопотерям оптимизацией вентиляции, и применением энергосберегающих стекол, например. Но на практике подобное решение игнорируют, и эту экономическую выгоду упускают. Почему?

Простые проекты

Проекты сейчас в основном делаются исходя из требований нормативов относительно сопротивления теплопередаче ограждающих конструкций. Такой проект сделать намного проще. Усложнять расчеты энергопотерями, которые происходят по разным причинам, многие не хотят, или не могут. Поэтому энергосберегающие мероприятия и экономическая целесообразность в полной мере не просчитываются.

Какие мероприятия по теплосбережению могут быть разработанными в проектах, и реализовываться на практике?

Меры по снижению теплопотерь

  • Увеличивать сопротивление теплопередаче конструкций. В первую очередь тех, которые выгодней утеплять. Например, если стены достаточно теплые, то дешевле с большим эффектом увеличить толщину утеплителя в кровле над мансардой, в полу, а также установить более энергосберегающие окна. Но у конкретного проекта, могут быть свои решения.
  • Рассмотреть возможность строительства одноэтажного дома вместо двухэтажного. У двухэтажных на 10% больше потерь тепла при прочих равных обстоятельствах.
  • Упростить форму здания, приблизить ее к правильному четырехугольнику, убрать навесные элементы, контактирующие с несущими ограждающими конструкциями. «Лишние » углы дают увеличение утечек тепла от 3%.
  • Применять «теплые» окна, защищенные снаружи рольставнями.
  • Предусмотреть современную автоматизированную вентиляционную систему с фиксированным количеством воздуха, и рекуперацией тепла.
  • Применить рекуперацию тепла канализационных стоков.
  • Запроектировать пристройку к наружным стенам других неотапливаемых помещений, — летней кухни, веранды, закрытой террасы, гаража, мастерской, склада…
  • Стремиться запроектировать максимальную площадь остекления с южной стороны. Чтобы нивелировать нагрев летом, предусмотреть дополнительные меры, например, затеняющий сад с опадающей листвой. жалюзи, карнизы.
  • Применить эффективные приемы отопления, — теплый пол с конденсационным котлом, программируемое регулирование температуры для каждой комнаты. Снижение температуры на 2 градуса экономит не менее 5% энергоносителя.

Важность вентиляции

Существенные теплопотери могут быть не только за счет непосредственной передачи тепла от предмета к предмету. Но и за счет выноса теплого воздуха вместе с вентиляцией, потерей энергии со сливаемой горячей водой, вследствие ухода лучевой энергии через стекла, обдувом (усиленным теплообменом) ветром…

Если ограждающие конструкции будут иметь требуемое сопротивление теплопередаче, то все равно, дом может терять энергию в гораздо большем количестве, чем это указано в нормативе.

Выход только в комплексном подходе к теплосбережению.
Вопросу вентиляции помещения нужно придать столько же важности, как и вопросу утепления.

Подбор проекта и комплексное теплосбережение

Стремление достичь значительного теплосбережения для всего здания с помощью полного устранения одной части теплопотерь, при игнорировании других, приведет лишь к повышенным затратам на такие мероприятия. Например, наращивание толщины утеплителя на стене, в кровле, под полом, свыше обычных нормативных значений, значительно дороже.

Важно найти такой проект дома, где вопрос энергосбережения рассматривался бы в комплексе, а не только как утепление ограждающих конструкций.

Подбору такого проекта и соответствующих специалистов-строителей нужно уделить максимум усилий.

Воздухообменом может удаляться половина генерируемого в доме тепла. Вопрос не только в наличии сквозняков, но и главным образом, — в неконтролируемой вытяжной вентиляции.

Расчет теплопотерь дома

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Вот пример расчёта для газового котла и электрического . Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Теплопотери через ограждающие конструкции

Приведу пример расчета для внешних стен двухэтажного дома.
1) Вычисляем сопротивление теплопередаче стены , деля толщину материала на его коэффициент теплопроводности. Например, если стена построена из тёплой керамики толщиной 0,5 м с коэффициентом теплопроводности 0,16 Вт/(м×°C), то делим 0,5 на 0,16:

0,5 м / 0,16 Вт/(м×°C) = 3,125 м 2 ×°C/Вт

Коэффициенты теплопроводности строительных материалов можно взять .

2) Вычисляем общую площадь внешних стен. Приведу упрощённый пример квадратного дома:

(10 м ширина × 7 м высота × 4 стороны) - (16 окон × 2,5 м 2) = 280 м 2 - 40 м 2 = 240 м 2

3) Делим единицу на сопротивление теплопередаче, тем самым получая теплопотери с одного квадратного метра стены на один градус разницы температуры.

1 / 3,125 м 2 ×°C/Вт = 0,32 Вт / м 2 ×°C

4) Cчитаем теплопотери стен. Умножаем теплопотери с одного квадратного метра стены на площадь стен и на разницу температур внутри дома и снаружи. Например, если внутри +25°C, а снаружи -15°C, то разница 40°C.

0,32 Вт / м 2 ×°C × 240 м 2 × 40 °C = 3072 Вт

Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери.

5) В киловатт-часах удобнее понимать смысл теплопотерь. За 1 час через наши стены при разнице температур в 40°C уходит тепловой энергии:

3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

3072 Вт × 24 ч = 73,728 кВт×ч


Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м 2 ×°C × 240 м 2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП, некоторая информация . Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета . Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Теплопотери через вентиляцию

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м 3

Плотность воздуха при температуре +20°C 1,2047 кг/м 3 . Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м 3 × 1,2047 кг/м 3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Теплопотери через канализацию

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м 3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м 3 . Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м 3 × 15 м 3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

Заключение

В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.

Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом . Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.

Если я где-то допустил ошибку, напишите в комментарии, но вроде всё перепроверил несколько раз. Надо сказать, что есть значительно более сложные методики расчета теплопотерь, там учитываются дополнительные коэффициенты, но их влияние незначительное.

Дополнение.
Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.


Показаны 25 последних комментариев. Показать все комментарии (54).





















Андрей Владимирович (11.01.2018 14:52)
В целом все отлично для простых смертных. Единственное я бы посоветовал, для тех кто любит указывать на неточности, в начале статьи указать более полную формулу
Q=S*(tвн-tнар)*(1+∑β)*n/Rо и объяснить,что (1+∑β)*n с учетом всех коэффициентов будет незначительно отличаться от 1 и не может грубо исказить расчет теплопотерь всей ограждающей конструкции, т.е. берем за основу формулу Q=S*(tвн-tнар)*1/Rо. С расчетом теплопотерь вентиляции не согласен, считаю по другому.Я бы высчитал общую теплоемкость всего объема, а затем умножил на реальную кратность. Удельную теплоемкость воздуха я бы все таки взял морозного (греть то будем уличный воздух), а она будет прилично выше. Да и теплоемкость воздушной смеси лучше взять сразу в Вт, равна 0.28 Вт / (кг °С).


На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома .

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

Санитарно-гигиенические требования:

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру : для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома . Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи .

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q - это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2);
  • ΔT - это разница между температурой на улице и в комнате (°С);
  • R - это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Материал и толщина стены

Сопротивление теплопередаче R m .

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

0.592
0.502
0.405
0.187

Сруб из бревна Ø 25
Ø 20

0.550
0.440

Сруб из бруса

Толщ. 20 сантиметров
Толщ. 10 сантиметров

0.806
0.353

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

0.476
0.709

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Деревянные полы

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Тип окна

R T

q . Вт/м2

Q . Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К

0.32
0.34
0.53
0.59

156
147
94
85

250
235
151
136

Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

0.42
0.44
0.53
0.60
0.45
0.47
0.55
0.67
0.47
0.49
0.58
0.65
0.49
0.52
0.61
0.68
0.52
0.55
0.65
0.72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
. Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
. Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной -30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых , а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

24
-26
-28
-30

76
83
87
89

75
81
83
85

70
75
78
80

66
71
75
76

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

24
-26
-28
-30

91
97
102
104

90
96
101
102

82
87
91
94

79
87
89
91

Рубленая стена (25 см)
с внутр. обшивкой

24
-26
-28
-30

61
65
67
70

60
63
66
67

55
58
61
62

52
56
58
60

Рубленая стена (20 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (18 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (10 см)
с внутр. обшивкой

24
-26
-28
-30

87
94
98
101

85
91
96
98

78
83
87
89

76
82
85
87

Каркасная стена (20 см)
с керамзитовымзаполнением

24
-26
-28
-30

62
65
68
71

60
63
66
69

55
58
61
63

54
56
59
62

Стена из пенобетона (20 см)
с внутр. штукатуркой

24
-26
-28
-30

92
97
101
105

89
94
98
102

87
87
90
94

80
84
88
91

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Пример 1.

Угловая комната (1 этаж)


Характеристики комнаты:

  • 1 этаж.
  • площадь комнаты - 16 м 2 (5х3.2).
  • высота потолка - 2.75 м.
  • наружных стен - две.
  • материал и толщина наружных стен - брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна - два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы - деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура -30 °С.
  • требуемая температура в комнате +20 °С.
  • Площадь наружных стен за вычетом окон: S стен (5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: S окон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: S пола = 5х3.2 = 16 м 2
  • Площадь потолка: S потолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Q стен = 18.94х89 = 1686 Вт.
  • Q окон = 3.2х135 = 432 Вт.
  • Q пола = 16х26 = 416 Вт.
  • Q потолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Q суммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)


Характеристики комнаты:

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна - 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура -30°С.
  • требуемая температура в комнате +20°С.
  • Площадь торцевых наружных стен за вычетом окон: S торц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: S скатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: S бок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: S окон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: S потолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Q торц.стен = 12х89 = 1068 Вт.
  • Q скатов.стен = 8.4х142 = 1193 Вт.
  • Q бок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Q окон = 6.4х135 = 864 Вт.
  • Q потолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Q суммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С. Т внутр. =20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

12
25
50
75

0.15
0.3
0.65
1.0

12
25
50
75

6
12
24
36

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

1.0
0.65
0.45

75
50
34

17
23
26

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

2.5
1.5
0.9

190
110
70

7
10
13

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

10
15
20

0.6
0.9
1.2

45
68
90

10
15
20

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери ).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре -25 °С необходимо 213 Вт на 1 м 2 общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - этот показатель будет составлять: при -25 °С - 173 Вт на м 2 общей площади, а при -30 °С - 177 Вт.

Вы здесь: Главная >> Утепление дома своими руками >> Как правильно утеплить дом своими руками: технология утепления дома >> Как уходит тепло через окна?

Как уходит тепло через окна?

В этой статье перечислим, что влияет на потери тепла через окна . И перечислим мы это для того, чтобы, утепляя окна своими руками, делать это с пониманием, что и для чего делаем.

Факторы, влияющие на теплопотери через окна

Итак, вот что влияет на потери тепла через окна:

  • размер окон и их количество (площадь светового проёма);
  • материал оконного блока;
  • тип остекления;
  • месторасположение;
  • уплотнение.

Теперь разберём «по косточкам» каждый фактор отдельно, узнаем, каким он должен быть оптимальным.

Какой должна быть площадь окон?

Очевидно, что чем больше площадь оконного проёма, тем больше тепла через него может покинуть комнату . Но совсем без окон нельзя… Площадь окон должна обосновываться расчетом: почему выбрали именно такую ширину и высоту окна?

Отсюда вопрос: какая площадь окон оптимальна в жилых домах?

Если обратиться к ГОСТ’ам, то получим чёткий ответ:

Площадь оконного проёма должна обеспечивать коэффициент естественной освещённости (КЕО), значение которого зависит от района строительства, характера местности, ориентации по сторонам света, назначения помещения, типа оконных переплётов.

Считается, что света поступает в помещение достаточно, если площадь всех стеклянных поверхностей в сумме составляет 10…12% от общей площади комнаты (рассчитанной по полу). По физиологическим показаниям считается, что оптимальное условие освещения достигается при ширине окон, равной 55% от ширины комнаты. Для котельных площадь светового проёма 0.33 м2 на 1 м3 объёма помещения.

Для отдельных помещений (например, котельных) имеются свои требования, о которых нужно узнавать в соответствующих нормативных документах.

Как снизить теплопотери при большой площади остекления?

Теплопотери через стёкла могут быть значительны, отчего и расходы на отопление большими.

Для уменьшения теплопотерь через окна на стёкла наносят специальные покрытия с односторонним пропусканием коротко- и длинноволнового излучения (длинноволновая часть спектра – это инфракрасные лучи, исходящие от отопительных приборов, они задерживаются, а коротковолновая часть - ультрафиолетовые лучи - пропускается). В результате зимой солнечный свет в помещение проходит, а тепло из помещения не уходит:

А летом наоборот:

Почему многослойное остекление эффективней?

Опыт показывает, что увеличение толщины воздушной прослойки между стёклами в двойном оконном переплёте, не приводит к увеличению тепловой эффективности всего окна. Эффективней сделать несколько прослоек, увеличивая количество стёкол.

«Классическая» двойная рама малоэффективна. А наибольшего эффекта можно достигнуть тройным остеклением. То есть, двухкамерный стеклопакет по всем параметрам (теплоизоляция, звукоизоляция) эффективней однокамерного.

(Камеры здесь – это промежутки между стёклами; два стекла – один промежуток, однокамерный стеклопакет; три стекла – два промежутка, две камеры… и т. д.)

Оптимальной толщиной воздушной прослойки между стёклами считается 16 мм.

Когда вам предлагают стеклопакеты, и нужно выбрать из нескольких видов, например, из таких (числа над стеклопакетами - это толщины стёкол и пространств между ними):


То оптимальные второй и третий.

Ну, опять же, нужно иметь в виду уплотнение стёкол. В современных стеклопакетах не только увеличено число камер, но и в пространстве между стёклами откачан воздух, вместо него закачан какой-нибудь инертный газ, и камеры герметичны.

Месторасположение окон и потери тепла через них

Оконное стекло почти полностью прозрачно для солнечного тепла, но не прозрачно для «чёрных» источников излучения (с температурой ниже 230 градусов).

Намного больше тепла проходит через стекло снаружи, чем может пройти изнутри. Такая односторонняя проводимость может приводить к тому, что зимой отопление помещений с солнечной стороны может не потребовать значительных трат. Летом же получаем, наоборот, перегрев комнат, отчего возникает необходимость в охлаждении помещений.

Наименьшее поступление света бывает с северной, северо-восточной и северо-западной сторон.

Вывод: учитывать расположение окон и их влияние на климат в доме нужно на стадии проектирования дома. В противном случае остаётся лишь «бороться» с помощью жалюзей, плёнок на стёклах, реставрации старых рам или замены их на новые, утепления откосов и прочих мероприятий, о которых в следующих статьях.