Определение угла между прямой и плоскости. Угол между прямой и плоскостью: определение, примеры нахождения

Внешняя

Понятие угла между прямой и плоскостью можно ввести для любого взаимного расположения прямой и плоскости.

Если прямая l перпендикулярна плоскости, то угол между l и считается равным 90 .

Если прямая l параллельна плоскости или лежит в этой плоскости, то угол между l и считается равным нулю.

Если прямая l является наклонной к плоскости, то угол между l и это угол " между прямой l и её проекцией p на плоскость (рис. 39 ).

Рис. 39. Угол между прямой и плоскостью

Итак, запомним определение для этого нетривиального случая: если прямая является наклонной, то угол между прямой и плоскостью есть угол между этой прямой

и её проекцией на данную плоскость.

7.1 Примеры решения задач

Разберём три задачи, расположенные по возрастанию сложности. Третья задача уровень C2 на ЕГЭ по математике.

Задача 1. В правильном тетраэдре найдите угол между боковым ребром и плоскостью основания.

Решение. Пусть ABCD правильный тетраэдр с реб-

ром a (рис. 40 ). Найдём угол между AD и плоскостью

Проведём высоту DH. Проекцией прямой AD на

плоскость ABC служит прямая AH. Поэтому искомый

угол " есть угол между прямыми AD и AH.

Отрезок AH есть радиус окружности, описанной

вокруг треугольника ABC:

AH = p

Теперь из прямоугольного треугольника ADH:

Рис. 40. К задаче 1

cos " = AD =p

Ответ: arccos p

Задача 2. В правильной треугольной призме ABCA1 B1 C1 боковое ребро равно стороне основания. Найдите угол между прямой AA1 и плоскостью ABC1 .

Решение. Угол между прямой и плоскостью не изменится при параллельном сдвиге прямой. Поскольку CC1 параллельна AA1 , искомый угол " есть угол между прямой CC1 и плоскостью ABC1 (рис.41 ).

B 1"

Рис. 41. К задаче 2

Пусть M середина AB. Проведём высоту CH в треугольнике CC1 M. Покажем, что CH перпендикуляр к плоскости ABC1 . Для этого нужно предъявить две пересекающиеся прямые этой плоскости, перпендикулярные CH.

Первая прямая очевидна это C1 M. В самом деле, CH ? C1 M по построению.

Вторая прямая это AB. Действительно, проекцией наклонной CH на плоскость ABC служит прямая CM; при этом AB ? CM. Из теоремы о трёх перпендикулярах следует тогда, что AB ? CH.

Итак, CH ? ABC1 . Стало быть, угол между CC1 и ABC1 есть " = \CC1 H. Величину CH найдём из соотношения

C1 M CH = CC1 CM

(обе части этого соотношения равны удвоенной площади треугольника CC1 M). Имеем:

CM = a 2 3 ;

Остаётся найти угол ":

Ответ: arcsin 3 7 .

C1 M =q CC1 2 + CM2 =r

a2 +4

CH = a

CH = ar

sin " = CH =3 : CC1 7

Задача 3. На ребре A1 B1 куба ABCDA1 B1 C1 D1 взята точка K так, что A1 K: KB1 = 3: 1. Найдите угол между прямой AK и плоскостью BC1 D1 .

Решение. Сделав чертёж (рис. 42 , слева), мы понимаем, что нужны дополнительные построения.

K B 1

Рис. 42. К задаче 3

Во-первых, заметим, что прямая AB лежит в плоскости BC1 D1 (поскольку AB k C1 D1 ). Во-вторых, проведём B1 M параллельно AK (рис.42 , справа). Проведём также B1 C, и пусть N есть точка пересечения B1 C и BC1 .

Покажем, что прямая B1 C перпендикулярна плоскости BC1 D1 . В самом деле:

1) B 1 C ? BC1 (как диагонали квадрата);

2) B 1 C ? AB по теореме о трёх перпендикулярах (ведь AB перпендикулярна прямой BC проекции наклонной B1 C на плоскость ABC).

Таким образом, B1 C перпендикулярна двум пересекающимся прямым плоскости BC1 D1 ; следовательно, B1 C ? BC1 D1 . Поэтому проекцией прямой MB

sin " = B 1 N =2 2 :B 1 M 5

Статья начинается с определение угла между прямой и плоскостью. В данной статье будет показано нахождение угла между прямой и плоскостью методом координат. Подробно будут рассмотрены решение примеров и задач.

Yandex.RTB R-A-339285-1

Предварительно необходимо повторить понятие о прямой линии в пространстве и понятие плоскости. Для определения угла между прямой и плоскостью необходимый несколько вспомогательных определений. Рассмотрим эти определения подробно.

Определение 1

Прямая и плоскость пересекаются в том случае, когда они имеют одну общую точку, то есть она является точкой пересечения прямой и плоскости.

Прямая, пересекающая плоскость, может являться перпендикулярной относительно плоскости.

Определение 2

Прямая является перпендикулярной к плоскости , когда она перпендикулярна любой прямой, находящейся в этой плоскости.

Определение 3

Проекция точки M на плоскость γ является сама точка, если она лежит в заданной плоскости, либо является точкой пересечения плоскости с прямой, перпендикулярной плоскости γ , проходящей через точку M , при условии, что она не принадлежит плоскости γ .

Определение 4

Проекция прямой а на плоскость γ - это множество проекций всех точек заданной прямой на плоскость.

Отсюда получаем, что перпендикулярная к плоскости γ проекция прямой имеет точку пересечения. Получаем, что проекция прямой a – это прямая, принадлежащая плоскости γ и проходящая через точку пересечения прямой a и плоскости. Рассмотрим на рисунке, приведенном ниже.

На данный момент имеем все необходимые сведения и данные для формулировки определения угла между прямой и плоскостью

Определение 5

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на эту плоскость, причем прямая не перпендикулярна к ней.

Определение угла, приведенное выше, помогает прийти к выводу о том, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми, то есть заданной прямой вместе с ее проекцией на плоскость. Значит, угол между ними всегда будет острым. Рассмотрим на картинке, приведенной ниже.

Угол, расположенный между прямой и плоскостью, считается прямым, то есть равным 90 градусов, а угол, расположенный между параллельными прямыми, не определяется. Бывают случаи, когда его значение берется равным нулю.

Задачи, где необходимо найти угол между прямой и плоскостью, имеет множество вариация решения. Ход самого решения зависит от имеющихся данных по условию. Частыми спутниками решения являются признаки подобия или равенства фигур, косинусы, синусы, тангенсы углов. Нахождение угла возможно при помощи метода координат. Рассмотрим его более детально.

Если в трехмерном пространстве вводится прямоугольная система координат О х у z , тогда в ней задается прямая a , пересекающая плоскость γ в точке M , причем она не перпендикулярна плоскости. Необходимо найти угол α , находящийся между заданной прямой и плоскостью.

Для начала необходимо применить определение угла между прямой и плоскостью методом координат. Тогда получим следующее.

В системе координат О х у z задается прямая a , которой соответствуют уравнения прямой в пространстве и направляющий вектор прямой пространства, для плоскости γ соответствует уравнение плоскости и нормальный вектор плоскости. Тогда a → = (a x , a y , a z) является направляющим вектором заданной прямой a , а n → (n x , n y , n z) - нормальным вектором для плоскости γ . Если представить, что у нас имеются координаты направляющего вектора прямой a и нормального вектора плоскости γ , тогда известны их уравнения, то есть заданы по условию, тогда есть возможность определения векторов a → и n → , исходя из уравнения.

Для вычисления угла необходимо преобразовать формулу, позволяющую получить значение этого угла при помощи имеющихся координат направляющего вектора прямой и нормального вектора.

Необходимо отложить векторы a → и n → , начиная от точки пересечения прямой a с плоскостью γ . Существуют 4 варианта расположения этих векторов относительно заданных прямых и плоскости. Рассмотри рисунок, приведенный ниже, на котором имеются все 4 вариации.

Отсюда получаем, что угол между векторами a → и n → имеет обозначение a → , n → ^ и является острым, тогда искомый угол α , располагающийся между прямой и плоскостью, дополняется, то есть получаем выражение вида a → , n → ^ = 90 ° - α . Когда по условию a → , n → ^ > 90 ° , тогда имеем a → , n → ^ = 90 ° + α .

Отсюда имеем, что косинусы равных углов являются равными, тогда последние равенства записываются в виде системы

cos a → , n → ^ = cos 90 ° - α , a → , n → ^ < 90 ° cos a → , n → ^ = cos 90 ° + α , a → , n → ^ > 90 °

Необходимо использовать формулы приведения для упрощения выражений. Тогда получим равенства вида cos a → , n → ^ = sin α , a → , n → ^ < 90 ° cos a → , n → ^ = - s i n α , a → , n → ^ > 90 ° .

Проведя преобразования, система приобретает вид sin α = cos a → , n → ^ , a → , n → ^ < 90 ° sin α = - cos a → , n → ^ , a → , n → ^ > 90 ° ⇔ sin α = cos a → , n → ^ , a → , n → ^ > 0 sin α = - cos a → , n → ^ , a → , n → ^ < 0 ⇔ ⇔ sin α = cos a → , n → ^

Отсюда получим, что синус угла между прямой и плоскостью равен модулю косинуса угла между направляющим вектором прямой и нормальным вектором заданной плоскости.

Раздел нахождения угла, образованного двумя векторами, выявили, что этот угол принимает значение скалярного произведения векторов и произведения этих длин. Процесс вычисления синуса угла, полученного пересечением прямой и плоскости, выполняется по формуле

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Значит, формулой для вычисления угла между прямой и плоскостью с координатами направляющего вектора прямой и нормального вектора плоскости после преобразования получается вида

α = a r c sin a → , n → ^ a → · n → = a r c sin a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Нахождение косинуса при известном синусе позволительно, применив основное тригонометрическое тождество. Пересечение прямой и плоскости образует острый угол. Это говорит о том, что его значение будет являться положительным числом, а его вычисление производится из формулы cos α = 1 - sin α .

Выполним решение нескольких подобных примеров для закрепления материала.

Пример 1

Найти угол, синус, косинус угла, образованного прямой x 3 = y + 1 - 2 = z - 11 6 и плоскостью 2 x + z - 1 = 0 .

Решение

Для получения координат направляющего вектора необходимо рассмотреть канонические уравнения прямой в пространстве. Тогда получим, что a → = (3 , - 2 , 6) является направляющим вектором прямой x 3 = y + 1 - 2 = z - 11 6 .

Для нахождения координат нормального вектора необходимо рассмотреть общее уравнение плоскости, так как их наличие определяется коэффициентами, имеющимися перед переменными уравнения. Тогда получим, что для плоскости 2 x + z - 1 = 0 нормальный вектор имеет вид n → = (2 , 0 , 1) .

Необходимо перейти к вычислению синуса угла между прямой и плоскостью. Для этого необходимо произвести подстановку координат векторов a → и b → в заданную формулу. Получаем выражение вида

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2 = = 3 · 2 + (- 2) · 0 + 6 · 1 3 2 + (- 2) 2 + 6 2 · 2 2 + 0 2 + 1 2 = 12 7 5

Отсюда найдем значение косинуса и значение самого угла. Получим:

cos α = 1 - sin α = 1 - 12 7 5 2 = 101 7 5

Ответ: sin α = 12 7 5 , cos α = 101 7 5 , α = a r c cos 101 7 5 = a r c sin 12 7 5 .

Пример 2

Имеется пирамида, построенная при помощи значений векторов A B → = 1 , 0 , 2 , A C → = (- 1 , 3 , 0) , A D → = 4 , 1 , 1 . Найти угол между прямой A D и плоскостью А В С.

Решение

Для вычисления искомого угла, необходимо иметь значения координат направляющего вектора прямой и нормального вектора плоскости. для прямой A D направляющий вектор имеет координаты A D → = 4 , 1 , 1 .

Нормальный вектор n → , принадлежащий плоскости А В С, является перпендикулярным вектору A B → и A C → . Это подразумевает то, что нормальным вектором плоскости А В С можно считать векторное произведение векторов A B → и A C → . Вычислим это по формуле и получим:

n → = A B → × A C → = i → j → k → 1 0 2 - 1 3 0 = - 6 · i → - 2 · j → + 3 · k → ⇔ n → = (- 6 , - 2 , 3)

Необходимо произвести подстановку координат векторов для вычисления искомого угла, образованного пересечением прямой и плоскости. получим выражение вида:

α = a r c sin A D → , n → ^ A D → · n → = a r c sin 4 · - 6 + 1 · - 2 + 1 · 3 4 2 + 1 2 + 1 2 · - 6 2 + - 2 2 + 3 2 = a r c sin 23 21 2

Ответ: a r c sin 23 21 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Угол а между прямой l и плоскостью 6 может быть определен через дополнительный угол р между заданной прямой l и перпендикуляром п к данной плоскости, проведенной из любой точки прямой (рис. 144). Угол Р дополняет искомый угол а до 90°. Определив истинную величину угла Р путем вращения вокруг прямой уровня плоскости угла, образованного прямой l и перпендикуляром и, остается дополнить его до прямого угла. Этот дополнительный угол и даст истинную величину угла а между прямой l и плоскостью 0.

27. Определение угла между двумя плоскостями.

Истинная величина двугранного угла - между двумя плоскостями Q и л. - может быть определена или путем замены плоскости проекций с целью преобразования ребра двугранного угла в проецирующую прямую (задачи 1 и 2), или если ребро не задано, как угол между двумя перпендикулярами n1 и n2, проведенными к данным плоскостям из произвольной точки М пространства В плоскости этих перпендикуляров при точке М получаем два плоских угла а и Р, которые соответственно равны линейным углам двух смежных углов (двугранных), образованных плоскостями q и л,. Определив истинную величину углов между перпендикулярными n1 и n2 путем вращения вокруг прямой уровня, тем самым определим и линейный угол двугранного угла, образованного плоскостями q и л.

    Кривые линии. Особые точки кривых линий.

На комплексном чертеже кривой ее особые точки, к которым относятся точки перегиба, возврата, излома, узловые точки, являются особыми точками и на ее проекции. Это объясняется тем, что особые точки кривых связаны с касательными в этих точках.

Если плоскость кривой занимает проецирующее положение (рис. а), то одна проекция этой кривой имеет форму прямой.

У пространственной кривой все ее проекции - кривые линии (рис. б).

Чтобы установить по чертежу, какая задана кривая (плоская или пространственная), необходимо выяснить, принадлежат ли все точки кривой одной плоскости. Заданная на рис. б кривая является пространственной, так как точка D кривой не принадлежит плоскости, определяемой тремя другими точками А, В и Е этой кривой.

Окружность - плоская кривая второго порядка, ортогональная проекция которой может быть окружностью и эллипсом

Цилиндрическая винтовая линия (гелиса) - пространственная кривая, представляющая собой траекторию точки, выполняющей винтовое движение.

29.Плоские и пространственные кривые линии.

См. вопрос 28

30. Комплексный чертеж поверхности. Основные положения .

Поверхностью называют множество последовательных положений линий, перемещающихся в пространстве. Эта линия может быть прямой или кривой и называется образующей поверхности. Если образующая кривая, она может иметь постоянный или переменный вид. Перемещается образующая по направляющим, представляющим собой линии иного направления, чем образующие. Направляющие линии задают закон перемещения образующим. При перемещении образующей по направляющим создается каркас поверхности (рис. 84), представляющий собой совокупность нескольких последовательных положений образующих и направляющих. Рассматривая каркас, можно убедиться, что образующие l и направляющие т можно поменять местами, но при этом по верхность получается одна и та же.

Любую поверхность можно получить различными способами.

В зависимости от формы образующей все поверхности можно разделить на линейчатые, у которых образующая прямая линия, и нелинейчатые, у которых образующая кривая линия.

К развертывающимся поверхностям относятся поверхности всех многогранников, цилиндрические, конические и торсовые поверхности. Все остальные поверхности - неразвертывающиеся. Нелинейчатые поверхности могут быть с образующей постоянной формы (поверхности вращения и трубчатые поверхности) и с образующей переменной формы (каналовые и каркасные поверхности).

Поверхность на комплексном чертеже задается проекциями геометрической части ее определителя с указанием способа построения ее образующих. На чертеже поверхности для любой точки пространства однозначно решается вопрос о принадлежности ее данной поверхности. Графическое задание элементов определителя поверхности обеспечивает обратимость чертежа, но не делает его наглядным. Для наглядности прибегают к построению проекций достаточно плотного каркаса образующих и к построению очерковых линий поверхности (рис. 86). При проецировании поверхности Q на плоскость проекций проецирующие лучи прикасаются к этой поверхности в точках, образующих на ней некоторую линию l , которая называется контурной линией. Проекция контурной линии называется очерком поверхности. На комплексном чертеже любая поверхность имеет: на П 1 - горизонтальный очерк, на П 2 - фронтальный очерк, на П 3 - профильный очерк поверхности. Очерк включает в себя, кроме проекций линии контура, также проекции линий обреза.

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Давайте повторим определение угла между прямой и плоскостью.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней , называется угол между прямой и ее проекцией на плоскость.

Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.

Построим угол между прямой a и плоскостью γ:

  1. Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
  2. Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b - проекция прямой a на плоскость γ;
  3. Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) - угол между прямыми а и b; ∠(a;γ) - угол между прямой а и плоскостью γ.

Для решения задач с помощью метода координат нам необходимо вспомнить следующее:

3. Если известны координаты направляющего вектора { a 1 ; b 1 ; c 1 } и вектора нормали
{a; b; c}, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.

Нам известна формула нахождения угла между прямыми:

; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a) =cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:

4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.

Любая плоскость в прямоугольной системе координат может быть задана уравнением

ax + by + cz + d = 0,

где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. {a; b; c}.

Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:

  1. Делаем рисунок, на котором отмечаем прямую и плоскость;
  2. Вводим прямоугольную систему координат;
  3. Находим координаты направляющего вектора по координатам его начала и конца;
  4. Находим координаты вектора нормали к плоскости;
  5. Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
  6. Находим значение самого угла.

Рассмотрим задачу:
1. В кубе ABCDA 1 B 1 C 1 D 1 найдите тангенс угла между прямой AC 1 и плоскостью BDD 1 .
Решение:


1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС 1 . Для этого сначала определим координаты точек А и С 1:
А(0; 1; 0);
С 1 (1; 0; 1).
{1; -1; 1}.
3. Найдем координаты вектора нормали к плоскости BB 1 D 1 . Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D 1 (0; 0; 1);
В(1; 1; 0);
D: a⋅0+b⋅0+c⋅0+d=0;
D 1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.

Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD 1 имеет координаты:
{1;-1; 0}.
4. Найдем синус между прямой АС 1 и плоскостью BDD 1:

5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС 1 и плоскостью BDD 1:

6. Найдем тангенс угла между прямой АС 1 и плоскостью BDD 1:

Ответ: .

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.

Решение:

1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:


3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:

Как получили координаты точки S ?

Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О - проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.

Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)

Треугольник SOB - прямоугольный, следовательно, по теореме Пифагора:



Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:

Получили систему из трех уравнений:


Подставим в уравнение:

Т.о., вектор нормали к плоскости SBD имеет координаты:

.
4. Найдем синус между прямой BD и плоскостью SBD.