Высшая нервная деятельность. Значение коры больших полушарий. Строение и функции больших полушарий головного мозга

Фасада

Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция — образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы—см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке). И, т.о. регистрируют суммарную активность всех ближайших нейронов. Современные электро-энцефалографы усиливают эти потенциалы в 2—3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ (рис. 55). В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8—12 колебаний в 1 сек.), в состоянии активного внимания — бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях — тэта-ритм (4—7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе — дельта-ритм (1—3 колебания в 1 сек.).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ — быстрой асинхронной активности (см. рис. 55). По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

В ЭЭГ при этом возникают различные формы синхронизации (см. рис. 55, ж, з). Выполнение освоенного и автоматизированного движения может протекать при незначительной активности очень небольшого числа корковых нейронов, находящихся в ограниченных областях коры. При этом почти на всей остальной поверхности коры восстанавливается исходный ритм колебаний — альфа-ритм (см. рис. 55, з).

В процессе спортивной тренировки происходит перестройка и совершенствование функций коры больших полушарий. С ростом спортивного мастерства увеличиваются амплитуда и регулярность проявления фоновой активности — альфа-ритма в состоянии покоя. При развитии качества быстроты (например, у баскетболистов) повышается частота волн альфа-ритма, что способствует ускорению произвольных движений.

В процессе мышечной работы значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электрической активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Процесс формирования двигательного навыка сопровождается концентрацией взаимосвязанной активности в ограниченных зонах коры, наиболее важных для текущей деятельности. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние — программирующие лобные области и задние — зоны афферентного синтеза (нижнетеменные и др.).

Как устроен наш мозг? Сколько нейронов в нем и каковы функции неокортекса? Современные ученые скрупулезно исследуют особенности нашего мозга и открывают все больше интересных подробностей.

Благодаря развитию высших нервных центров человек определяет себя и свое место в социуме, сознательно контролирует свое поведение и способен к адаптации в новой среде. Все эти преимущества связаны с функциями больших полушарий, которые мы рассмотрим.

Особенности мозга человека

Мозг человеческого вида весит приблизительно 1 кг 200 грамм - это средние показатели. Он состоит из 5 основных частей: это конечный, промежуточный, средний, задний и продолговатый мозг.

Большие борозды (углубления) разделяют 4 основные части лобную долю от теменной; а теменную - от затылочной; примыкает к трем другим. Последняя, пятая доля - островковая, которая находится в глубине латеральной ямки. Гармоничное взаимодействие всех нейронов обеспечивает рост и развитие нашей индивидуальности, наш характер и способности.

Можно выделить отдельную функцию больших полушарий - непрекращающееся развитие. Мозг человека все время развивается. Все, что индивидуум читает, видит, воспринимает, он буквально впитывает в себя. Особенно важна новая информация для детей до 2 лет, в это время их нейроны активно выстраивают связи на будущее.

Большие полушария. Строение и функции

В коре имеется от 14 до 17 млрд нейронов; а связей между клетками во много раз больше. Нейроны соединены синапсами. А помогают активировать связи различные нейромедиаторы - химические вещества, которые активируют рядом находящийся синапс.

Полушария мозга имеют особую структуру. Благодаря складкам, состоящим из борозд и извилин, площадь коры значительно увеличивается. По некоторым данным, общая площадь коры у среднестатистического человека - 2200 кв. см.

Под корой находится подкорка, или белое вещество мозга. Полушария между собой соединены мозолистым телом. А еще глубже находятся желудочки мозга - заполненные спинномозговой жидкостью пространства.

Кора состоит из слоев нервных нервных клеток, которые чередуются со слоями их ответвлений - аксонов. Всего насчитывается 6 слоев:

  • молекулярный слой;
  • наружный зернистый;
  • наружный пирамидный - содержит преимущественно пирамидные нейроны;
  • внутренний зернистый;
  • внутренний пирамидный;
  • слой веретеновидных нейронов.

Веретеновидные нейроны постепенно переходят в мозга. В коре происходят сознательные действия, формируется речь. В нижних глубинных частях под корой расположены центры бессознательных рефлексов и контроль внутренних органов и систем органов.

Зоны мозга

Чтобы понять функции больших полушарий головного мозга, нужно сначала разобрать их структуру. Полушария разделены условно на несколько центров, в которых проходят определенные психические и физиологические процессы. Эти центры не являются какими-то отдельными структурами. Все нейроны всех сетей постоянно взаимодействуют друг с другом. Это подтверждают многие исследователи.

Но все-таки можно выделить некоторые области в сером веществе мозга, которые более специализируются на отдельных задачах.

Зоны мозга нейрофизиологи выделяют следующие:

  • Затылочная зона.
  • Височная - отвечает за обоняние и вкус. Два эти чувства сильно взаимосвязаны.
  • Зрительная зона. Тут расшифровываются сигналы, поступающие от глаз.
  • Теменная - это так называемая зона кожно-мышечной чувствительности.
  • Лобная доля - это сознательное поведение человека, его установки и трудовая деятельность. Задняя часть лобной доли - двигательный центр.

Функции больших полушарий мозга, как видим, распределены по зонам. Некоторые области имеют несколько функций. Например, руки связаны в больших полушариях с двумя зонами - двигательной и чувствительной.

И если при черепно-мозговой травме будет повреждена какая-либо из указанных областей, то функция этой зоны пострадает или совершенно пропадет. Восстановить утраченную функцию можно в том случае, если другая часть мозга - та, где находились нейроны, связанные с поврежденными тканями, сможет взять на себя всю работу утраченного центра.

Функции коры

Итак, каковы функции коры больших полушарий? Кора мозга отвечает за условные рефлексы, сформированные в процессе накопления опыта. Также в коре проходят все высшие психические процессы. Здесь сосредоточены зоны памяти, речи, мышления. Это более поздняя биологическая структура по сравнению с древним центральным мозгом, и она плохо изучена. Но известно, что наша личность и особенности характера, способность к усвоению и анализированию информации заложены именно в коре.

Большую роль играют в формировании навыков и привычек ассоциативные области. Можно сказать, утрируя информацию, что самая основная функция коры коры больших полушарий именно ассоциативная. Ведь на основе этих механизмов формируется и личность.

Ассоциативных областей 3:

  • теменно-затылочно-височная;
  • префронтальная ассоциативная;
  • лимбическая.

Совместная работа этих центров обеспечивает всесторонний анализ поступающей извне информации. Без этих высших центров человек не смог бы целенаправленно выполнять работу.

Двигательная активность

Важнейшая функция больших полушарий - физическая активность. В передних отделах предцентральной извилины находится центр, где локализованы области проекции ступней и голеней. В средней части этой извилины находятся клетки, работающие с сигналами верхних конечностей, а самая глубокая часть предцентральной извилины отвечает за работу мышц лица.

Слаженная работа рецепторов проводящих нервных путей и этих мозговых центров обеспечивает нам ходьбу, работу руками и другую двигательную активность. Причем это все контролируется автоматически. Спортсмен ведь уже не думает, как согнуть ногу во время бега. Достаточно только дать сигнал старта сознательно.

Память и речь

В формировании памяти играют роль медиальная височная зона и гиппокамп. Однако они не являются тем местом, где накопленная информация хранится. Это скорее служебные зоны. Считается, что человек запоминает все, что видел или слышал когда-то. Основная проблема заключается в способности воспроизведения информации и ее перекодирования в слова.

Область речи - это граница височной и теменной зон. Причем у человека различают 2 зоны: отвечающий за речевое восприятие центр Вернике и за само произношение центр Брока.

Как лучше запомнить информацию?

Одна из функций больших полушарий, как мы теперь понимаем, - это запоминание и воспроизведение закодированной информации в словах. Если держать в мыслях и постоянно повторять одни и те же слова, то информация останется только в зоне речи и через несколько дней исчезнет.

Чтобы более глубоко запомнить информацию, необходимо применять образное мышление, ассоциируя каждое абстрактное понятие с яркими объектами.

В глубинной памяти у нас сохраняются только те аспекты реальности, которые связаны с яркими впечатлениями и сильными продолжительными эмоциями. А эмоции у нас "базируются" глубоко в белом веществе - в миндалевидном теле. Функции больших полушарий связаны с чисто сознательными намерениями запомнить.

Стрессы и депрессии ухудшают способность мозга запоминать что-либо. Начинать учить материал в беспокойном или раздражительном состоянии попросту бесполезно.

Вывод

Что можно сказать о функциях больших полушарий? Все центры мозга тесно взаимосвязаны. Говоря о конкретных областях, ученые подразумевают скопление нейронов, которые больше других взаимосвязанных сетей участвуют в том или ином психическом процессе.

Формирование памяти, способность говорить и думать словами - это самый сложный психический процесс. На это уходит большое количество энергии, и речью занято множество нервных клеток.

Кора больших полушарий связана непосредственно с сознательными процессами, а подкорка - с бессознательными, глубинными частями личности, которое Фрейд называл "Оно".

Условно-рефлекторная деятельность коры больших полушарий.

Конечный, или большой мозг развивается из переднего мозгового пузыря, состоит из сильно развитых парных частей - правого и левого полушарий большого мозга и соединяющей их срединной части. Полушария разделены продольной щелью, в глубине которой лежит пластинка белого вещества - мозолистое тело. Оно состоит из волокон, соединяющих оба полушария. Под мозолистым телом находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между передней частью мозолистого тела и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушарие большого мозга образовано серым и белым веществом. В нем различают самую большую часть, покрытую бороздами и извилинами- плащ, образованный лежащим на поверхности серым веществом - корой большого мозга, обонятельный мозг и скопления серого вещества внутри полушарий - базальные ядра. Два последних отдела составляют наиболее старую в эволюционном развитии часть полушария. Полостями конечного мозга являются боковые желудочки.

Количество безусловных рефлексов ограничено и они могли бы обеспечить существование организма лишь при постоянстве окружающей (а также внутренней для организма) среды. А так как условия существования весьма сложны, изменчивы и многообразны, то приспособление организма к среде должно обеспечиваться при помощи другого рода реакций- реакций, которые позволили бы организму адекватно реагировать на все изменения окружающей среды. Это и осуществляется благодаря механизму временных связей - условных рефлексов.

Характерной особенностью этих рефлексов является то, что они образуются в течение индивидуальной жизни животного и не является постоянными, они могут исчезать и вновь появляться в зависимости от изменяющихся условий среды.

Временный характер условного рефлекса обеспечивается наличием процесса торможения, который наряду с процессом возбуждения определяет общую динамику корковой деятельности. Причиной возникновения условного торможения является не подкрепление условного сигнала безусловным раздражителем. Процесс торможения лежит также в основе второго важного механизма в работе коры мозга - механизма анализаторов. Сложность окружающей среды и многообразие действующих на организм раздражителей требует от животного различения (дифференцирования) разного рода сигналов, что также лежит в основе приспособления. Способность коры мозга к осуществлению анализа различной тонкости и сложности зависит от уровня ее развития у разных животных, а также от экологических факторов. Последние в значительной мере определяют степень совершенства в деятельности того или другого анализатора. Аналитическая деятельность коры головного мозга находится в неразрывной связи с синтетической, причем в соответствии с требованиями окружающей среды либо одна, либо другая могут приобретать решающее значение.

Условный рефлекс вырабатывается на базе какого-либо безусловного рефлекса. При выработке условного рефлекса должно иметь место сочетания действия двух раздражителей: условного и безусловного. Условным раздражителем может быть любой агент, действующий на рецепторы животного (свет, звук, прикосновение и т.д.). Причем сила этого агента должна быть достаточной, чтобы вызвать отчетливую (но не чрезмерную) реакцию организму.

Функции мозжечка

Главная функция мозжечка заключается в коррекции деятельности других двигательных центров, в координации целенаправленных движений и регуляции тонуса мышц.

Мозжечок участвует в координации движений, сохранении позы и равновесия. Это осуществляется путём перераспределения мышечного тонуса, обеспечения мышечного тонуса, обеспечения правильного напряжения различных групп мышц при каждом двигательном акте, устранения ненужных, лишних движений.

Мозжечок участвует в регуляции вегетативных функциях (сосудистого тонуса, деятельности желудочно-кишечного тракта, состава крови)за счёт многочисленных связей с ядрами ретикулярной формации ствола мозга.

Кора головного мозга является центром высшей нервной (психической) деятельности человека и контролирует выполнение огромного количества жизненно важных функций и процессов. Она покрывает всю поверхность больших полушарий и занимает около половины их объема.

Большие полушария головного мозга занимают около 80% объема черепной коробки, и состоят из белого вещества, основа которого состоит из длинных миелиновых аксонов нейронов. Снаружи полушария покрывает серое вещество или кора головного мозга, состоящая из нейронов, безмиелиновых волокон и глиальных клеток, которые также содержатся в толще отделов этого органа.

Поверхность полушарий условно делится на несколько зон, функциональность которых заключается в управлении организмом на уровне рефлексов и инстинктов. Также в ней находятся центры высшей психической деятельности человека, обеспечивающие сознание, усвоение поступившей информации, позволяющей адаптироваться в окружающей среде, и через нее, на уровне подсознания, посредством гипоталамуса контролируется вегетативная нервная система (ВНС), управляющая органами кровообращения, дыхания, пищеварения, выделения, размножения, а также метаболизмом.

Для того чтобы разобраться что такое кора мозга и каким образом осуществляется ее работа, требуется изучить строение на клеточном уровне.

Функции

Кора занимает большую часть больших полушарий, а ее толщина не равномерна по всей поверхности. Такая особенность обусловлена большим количеством связующих каналов с центральной нервной системой (ЦНС), обеспечивающих функциональную организацию коры мозга.

Эта часть головного мозга начинает образовываться еще во время внутриутробного развития и совершенствуется на протяжении всей жизни, посредством получения и обработки сигналов, поступающих из окружающей среды. Таким образом, она отвечает за выполнение следующих функций головного мозга:

  • связывает органы и системы организма между собой и окружающей средой, а также обеспечивает адекватную реакцию на изменения;
  • обрабатывает поступившую информацию от моторных центров с помощью мыслительных и познавательных процессов;
  • в ней формируется сознание, мышление, а также реализовывается интеллектуальный труд;
  • осуществляет управление речевыми центрами и процессами, характеризующими психоэмоциональное состояние человека.

При этом данные поступают, обрабатываются, сохраняются благодаря значительному количеству импульсов, проходящих и образующихся в нейронах, связанных длинными отростками или аксонами. Уровень активности клеток можно определить по физиологическому и психическому состоянию организма и описать с помощью амплитудных и частотных показателей, так как природа этих сигналов похожа на электрические импульсы, а их плотность зависит от участка, в котором происходит психологический процесс.

До сих пор неясно, каким образом лобная часть коры больших полушарий влияет на работу организма, но известно, что она мало восприимчива к процессам, происходящим во внешней среде, поэтому все опыты с воздействием электрических импульсов на этот участок мозга, не находят яркого отклика в структурах. Однако отмечается, что люди, у которых лобная часть повреждена, испытывают проблемы в общении с другими индивидами, не могут реализовать себя в какой-либо трудовой деятельности, а также им безразличен их внешний вид и сторонние мнение. Иногда встречаются и другие нарушения в осуществлении функций этого органа:

  • отсутствие концентрации внимания на предметах обихода;
  • проявление творческой дисфункции;
  • нарушения психоэмоционального состояния человека.

Поверхность коры полушарий поделена на 4 зоны, очерченные наиболее четкими и значимыми извилинами. Каждая из частей при этом контролирует основные функции коры головного мозга:

  1. теменная зона - отвечает за активную чувствительность и музыкальное восприятие;
  2. в затылочной части расположена первичная зрительная область;
  3. височная или темпоральная отвечает за речевые центры и восприятие звуков поступивших из внешней среды, кроме того участвует в формировании эмоциональных проявлений, таких как радость, злость, удовольствие и страх;
  4. лобная зона управляет двигательной и психической активностью, а также руководит речевой моторикой.

Особенности строения коры мозга

Анатомическое строение коры больших полушарий обусловливает ее особенности и позволяет выполнять возложенные на нее функции. Кора головного мозга владеет следующим рядом отличительных черт:

  • нейроны в ее толще располагаются послойно;
  • нервные центры находятся в конкретном месте и отвечают за деятельность определенного участка организма;
  • уровень активности коры зависит от влияния ее подкорковых структур;
  • она имеет связи со всеми нижележащими структурами центральной нервной системы;
  • наличие полей разных по клеточному строению, что подтверждается гистологическим исследованием, при этом каждое поле отвечает за выполнение какой-либо высшей нервно деятельности;
  • присутствие специализированных ассоциативных областей позволяет устанавливать причинно-следственную связь между внешними раздражителями и ответом организма на них;
  • способность к замещению поврежденных участков близлежащими структурами;
  • этот отдел мозга способен сохранять следы возбуждения нейронов.

Большие полушария головного мозга состоят главным образом из длинных аксонов, а также содержит в своей толще скопления нейронов, образующих наибольшие ядра основания, которые входят в состав экстрапирамидальной системы.

Как уже говорилось, формирование коры мозга происходит еще во время внутриутробного развития, причем вначале кора состоит из нижнего слоя клеток, а уже в 6 месяцев ребенка в ней сформированы все структуры и поля. Окончательное становление нейронов происходит к 7-летнему возрасту, а рост их тел завершается в 18 лет.

Интересен тот факт, что толщина коры не равномерна на всей протяженности и включает в себя разное количество слоев: например, в области центральной извилины она достигает своего максимального размера и насчитывает все 6 слоев, а участки старой и древней коры имеют 2-х и 3-х слойное строение соответственно.

Нейроны этой части мозга запрограммированы на восстановление поврежденного участка посредством синоптических контактов, таким образом каждая из клеток активно старается восстановить поврежденные связи, что обеспечивает пластичность нейронных корковых сетей. Например, при удалении или дисфункции мозжечка, нейроны, связывающие его с конечным отделом, начинают прорастать в кору больших полушарий. Кроме того пластичность коры также проявляется в обычных условиях, когда происходит процесс обучения новому навыку или в результате патологии, когда функции, выполняемые поврежденной зоной, переходят на соседние участки мозга или даже полушария.

Кора мозга обладает способностью сохранять следы возбуждения нейронов длительное время. Эта особенность позволяет обучаться, запоминать и отвечать определенной реакцией организма на внешние раздражители. Так происходит формирование условного рефлекса, нервный путь которого состоит из 3 последовательно соединенных аппарата: анализатора, замыкательного аппарата условно-рефлексных связей и рабочего прибора. Слабость замыкательной функции коры и следовых проявлений можно наблюдать у детей с выраженной умственной отсталостью, когда образовавшиеся условные связи между нейронами хрупки и ненадежны, что влечет за собой трудности в обучении.

Кора головного мозга включает в себя 11 областей, состоящих из 53 полей, каждому из которых в нейрофизиологии присвоен свой номер.

Области и зоны коры

Кора относительно молодая часть ЦНС, развывшаяся из конечного отдела мозга. Эволюционно становление этого органа происходило поэтапно, поэтому ее принято разделять на 4 типа:

  1. Архикортекс или древняя кора в связи с атрофией обоняния превратился в гиппокамповую формацию и состоит из гиппокампа и сопряженных ему структур. С помощью ее регулируется поведение, чувства и память.
  2. Палеокортекс или старая кора, составляет основную часть обонятельной зоны.
  3. Неокортекс или новая кора имеет толщину слоя около 3-4 мм. Является функциональной частью и совершает высшую нервную деятельность: обрабатывает сенсорную информацию, отдает моторные команды, а также в ней формируется осознанное мышление и речь человека.
  4. Мезокортекс является промежуточным вариантом первых 3 типов коры.

Физиология коры больших полушарий

Кора головного мозга имеет сложную анатомическую структуру и включает в себя сенсорные клетки, моторные нейроны и интернероны, обладающих способностью останавливать сигнал и возбуждаться в зависимости от поступивших данных. Организация этой части мозга построена по колончатому принципу, в котором колонки делаться на микромодули, имеющие однородное строение.

Основу системы микромодулей составляют звездчатые клетки и их аксоны, при этом все нейроны одинаково реагируют на поступивший афферентный импульс и посылают также синхронно в ответ эфферентный сигнал.

Формирование условных рефлексов, обеспечивающих полноценное функционирование организма, и происходит благодаря связи головного мозга с нейронами, расположенными в различных частях тела, а кора обеспечивает синхронизацию умственной деятельности с моторикой органов и областью, отвечающей за анализ поступающих сигналов.

Передача сигнала в горизонтальном направлении происходит через поперечные волокна, находящиеся в толще коры, и передают импульс от одной колонки к другой. По принципу горизонтальной ориентации кору мозга можно поделить на следующие области:

  • ассоциативная;
  • сенсорная (чувствительная);
  • моторная.

При изучении этих зон применялись различные способы воздействия на нейроны, входящие в ее состав: химическое и физическое раздражение, частичное удаление участков, а также выработка условных рефлексов и регистрация биотоков.

Ассоциативная зона связывает поступившую сенсорную информацию с полученными ранее знаниями. После обработки формирует сигнал и передает его в двигательную зону. Таким образом она участвует в запоминании, мышлении и обучении новым навыкам. Ассоциативные участки коры головного мозга расположены в близости с соответствующей сенсорной зоной.

Чувствительная или сенсорная зона занимает 20% коры головного мозга. Она также состоит из нескольких составляющих:

  • соматосенсорной, расположенной в теменной зоне отвечает за тактильную и вегетативную чувствительность;
  • зрительной;
  • слуховой;
  • вкусовой;
  • обонятельной.

Импульсы от конечностей и органов осязания левой стороны тела, поступают по афферентным путям в противоположную долю больших полушарий для последующей обработки.

Нейроны моторной зоны возбуждаются при помощи импульсов, поступивших от клеток мускулатуры, и находятся в центральной извилине лобной доли. Механизм поступления данных схож с механизмом сенсорной зоны, так как двигательные пути образуют перехлест в продолговатом мозге и следуют в расположенную напротив моторную зону.

Извилины борозды и щели

Кора больших полушарий образована несколькими слоями нейронов. Характерной особенностью этой части мозга является большое количество морщин или извилин, благодаря чему ее площадь во много раз превосходит площадь поверхности полушарий.

Корковые архитектонические поля определяют функциональное строение участков коры головного мозга. Все они различны по морфологическим признакам и регулируют разные функции. Таким образом выделяется 52 различных поля, расположенных на определенных участках. По Бродману это разделение выглядит следующим образом:

  1. Центральная борозда разделяет лобную долю от теменной области, впереди нее пролегает предцентральная извилина, а сзади - позадицентральная.
  2. Боковая борозда отгораживает теменную зону от затылочной. Если развести ее боковые края то внутри можно рассмотреть ямку, в центре которой имеется островок.
  3. Теменно-затылочная борозда отделяет теменную долю от затылочной.

В предцентральной извилине расположено ядро двигательного анализатора, при этом к мышцам нижней конечности относятся верхние части передней центральной извилины, а к мышцам полости рта, глотки и гортани – нижние.

Правосторонняя извилина образует связь с двигательным аппаратом левой половины тела, левосторонняя – с правой частью.

В позадицентральной извилине 1 доли полушария содержится ядро анализатора тактильных ощущений и она также связана с противолежащей частью тела.

Клеточные слои

Кора головного мозга осуществляет свои функции посредством нейронов, находящихся в ее толще. Причем количество слоев этих клеток может отличаться в зависимости от участка, габариты которых также разнятся по размеру и топографии. Специалисты выделяют следующие слои коры головного мозга:

  1. Поверхностный молекулярный сформирован в основном из дендритов, с небольшим вкраплением нейронов, отростки которых не покидают границы слоя.
  2. Наружный зернистый состоит из пирамидальных и звездчатых нейронов, отростки которых связывают его со следующим слоем.
  3. Пирамидальный образован пирамидными нейронами, аксоны которых направлены вниз, где обрываются или образуют ассоциативные волокна, а дендриты их соединяют этот слой с предыдущим.
  4. Внутренний зернистый слой сформирован звездчатыми и малыми пирамидальными нейронами, дендриты которых уходят в пирамидальный слой, а также его длинные волокна уходят в верхние слои или спускаются вниз в белое вещество мозга.
  5. Ганглионарный состоит из крупных пирамидальных нейроцитов, их аксоны выходят за пределы коры и связывают различные структуры и отделы ЦНС между собой.

Мультиформный слой сформирован всеми видами нейронов, а их дендриты ориентированы в молекулярный слой, а аксоны пронизывают предыдущие слои или выходят за пределы коры и образуют ассоциативные волокна, образующие связь клеток серого вещества с остальными функциональными центрами головного мозга.

Видео: Кора больших полушарий головного мозга

Тема: Физиология ЦНС

Лекция №6– Общая характеристика головного мозга. Физиология продолговатого, среднего, промежуточного мозга, мозжечка, лимбической системы и коры больших полушарий.

Цель – Дать представление о роли различных отделов головного мозга в интегративной деятельности человека.

Головной мозг состоит из продолговатого мозга (его вместе с мостом называют задним мозгом), среднего и промежуточного мозга, мозжечка, базальных ядер, лимбической системы и коры больших полушарий. Каждый из них выполняет свою важную функцию, но в целом обеспечивает физиологические функции внутренних органов, скелетной мускулатуры и осуществление деятельности организма как единого целого.

Продолговатый мозг и варолиев мост – их относят к заднему мозгу, который является частью ствола мозга. Задний мозг осуществляет сложную рефлекторную деятельность и служит для соединения спинного мозга с вышележащими отделами головного мозга. В срединной его области расположены задние отделы ретикулярной формации, оказывающие неспецифические тормозные влияния на спинной и головной мозг.

Через продолговатый мозг проходят восходящие пути от рецепторов слуховой и вестибулярной чувствительности. Функции нейронов вестибулярных ядер продолговатого мозга разнообразны. Одна часть их реагирует на перемещение тела (например, при горизонтальных ускорениях в одну сторону они увеличивают частоту разрядов, а при ускорениях в другую сторону уменьшают их). Другая часть предназначена для связи с моторными системами. Эти вестибулярные нейроны, повышая возбудимость мотонейронов спинного мозга и нейронов двигательной зоны коры больших полушарий, позволяют регулировать двигательные акты в соответствии с вестибулярными влияниями.

В продолговатом мозгу оканчиваются афферентные нервы, несущие информацию от рецепторов кожи и мышечных рецепторов. Здесь они переключаются на другие нейроны, образуя путь в таламус и далее в кору больших полушарий. Восходящие пути кожно-мышечной чувствительности (как и большая часть нисходящих кортико-спинальных волокон) перекрещиваются на уровне продолговатого мозга.

В продолговатом мозгу и варолиевом мосту находится большая группа черепно-мозговых ядер (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Совершенство этих рефлексов обусловлено наличием большого количества нейронов, образующих ядра и соответственно большого числа нервных волокон. Так, только в одном нисходящем корешке тройничного нерва, проводящем болевую, температурную и тактильную чувствительность от головы, содержится во много раз больше волокон, чем в спинно-таламическом пути, содержащем волокна, идущие от болевых и температурных рецепторов остальной части тела.

На дне IV желудочка в продолговатом мозгу находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха и пнеймотаксического отдела. Его составляют мелкие нервные клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. В непосредственной близости расположены сердечный и сосудо -двигательный центры. Они регулируют деятельность сердца и состояние сосудов. Функции этих центров взаимосвязаны. Ритмические разряды дыхательного центра изменяют частоту сердечных сокращений, вызывая дыхательную аритмию - учащение сердцебиений на вдохе и замедление их на выдохе.

В продолговатом мозгу находится ряд рефлекторных центров, связанных с процессами пищеварения. Это группа центров моторных рефлексов (жевания, глотания, движений желудка и части кишечника), а также секреторных (слюноотделение, выделение пищеварительных соков желудка, поджелудочной железы и др.). Кроме того, здесь находятся центры некоторых защитных рефлексов: чихания, кашля, мигания, слезоотделения, рвоты.

Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц. Влияния, исходящие из вестибулярных ядер продолговатого мозга, усиливают тонус мышц-разгибателей, что важно для организации позы.

Неспецифические отделы продолговатого мозга, наоборот, оказывают угнетающее влияние на тонус скелетных мышц, снижая его и в мышцах-разгибателях. Продолговатый мозг участвует в осуществлении рефлексов поддержания и восстановления позы тела, так называемых установочных рефлексов.

Средний мозг. Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.

В состав среднего мозга входят четверохолмия, черная субстанция и красное ядро . Срединную его часть занимает ретикулярная формация, нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.

Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры-первичные слуховые центры. Ими осуществляются также реакции, являющимися компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных-настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).

Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва, иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).

В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.

От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точных движений. В опыте при перерезке мозга ниже красного ядра происходит возбуждение мышц – расгибателей и торможение мышц – сгибателей, что характеризуется определенной позой, называемой децеребрационной ригидностью.

Промежуточный мозг. В состав промежуточного мозга, который является передним концом ствола мозга, входят зрительные бугры - таламус и подбугровая область - гипоталамус.

Таламус представляет собой важнейшую «станцию» на пути афферентных импульсов в кору больших полушарий.

Ядра таламуса подразделяют на специфические и неспецифические.

К специфическим относят переключательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Это так называемые специфические восходящие пути. Они характеризуются соматотопической организацией. Особенно большое представительство в таламусе имеют эфферентные влияния, поступающие от рецепторов лица и пальцев рук. От таламических нейронов начинается путь к соответствующим воспринимающим областям коры - слуховым, зрительных и др. Ассоциативные ядра непосредственно не связаны с периферией. Они получают импульсы от переключающих ядер и обеспечивают их взаимодействие на уровне таламуса, т. е. осуществляют подкорковую интеграцию специфических влияний. Импульсы от ассоциативных ядер таламуса поступают в ассоциативные области коры больших полушарий, где участвуют в процессах высшего афферентного синтеза.

Помимо этих ядер, в таламусе имеются неспецифические ядра, которые могут оказывать как активирующее, так и тормозящее влияние на кору.

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. Между корой и таламусом существуют кольцевые кортико-таламические взаимосвязи, лежащие в основе образования условных рефлексов. С непосредственным участием таламуса происходит формирование эмоций человека. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли.

Подбугровая область (гипоталамус) расположена под зрительными буграми и имеет тесные нервные и сосудистые связи с прилежащей железой внутренней секреции-гипофизом. Здесь расположены важные вегетативные нервные центры, регулирующие обмен веществ в организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и другие вегетативные функции.

Участвуя в выработке условных рефлексов и регулируя вегетативные реакции организма, промежуточный мозг играет очень важную роль в двигательной деятельности, особенно при формировании новых двигательных актов и выработке двигательных навыков.

Базальные ядра – так называют группу ядер серого вещества, расположенных непосредственно под полушариями большого мозга. К ним относятся парные образования: хвостатое тело и скорлупа, составляющие вместе полосатое тело (стриатум), и бледное ядро (паллидум). Базальные ядра получают сигналы от рецепторов тела через зрительные бугры. Эфферентные импульсы подкорковых ядер направляются к нижележащим центрам экстрапирамидной системы. Подкорковые узлы функционируют в единстве с корой больших полушарий, промежуточным мозгом и другими отделами мозга. Это обусловлено наличием кольцевых связей между ними. Через эти подкорковые ядра могут соединять между собою разные отделы коры больших полушарий, что имеет большое значение при образовании условных рефлексов. Совместно с промежуточным мозгом подкорковые ядра участвуют в осуществлении сложных безусловных рефлексов: оборонительных, пищевых и др.

Представляя собой высший отдел мозгового ствола, базальные ядра объединяют деятельность нижележащих образований, регулируя мышечный тонус и обеспечивая необходимое положение тела во время физической работы. Бледное ядро выполняет моторную функцию. Оно обеспечивает проявление древних автоматизмов - ритмических рефлексов. С его деятельностью связано также выполнение содружественных (например, движения туловища и рук при ходьбе), мимических и других движений.

Полосатое тело оказывает на двигательную деятельность тормозящее, регулирующее влияние, угнетая функции бледного ядра, а также моторкой области коры больших полушарий. При заболевании полосатого тела возникают непроизвольные беспорядочные сокращения мышц (гиперкинезы). Они обусловливают некоординированные толчкообразные движения головы, рук и ног. Нарушения возникают также в чувствительной сфере - понижается болевая чувствительность, расстраиваются внимание и восприятие.

В настоящее время выявлено значение хвостатого тела в самооценке поведения человека. При неправильных движениях или умственных операциях из хвостатого ядра в кору больших полушарий поступают импульсы, сигнализирующие об ошибке.

Мозжечок. Это - надсегментарное образование, не имеющее непосредственной связи с исполнительными аппаратами. Мозжечок входит в состав экстрапирамидной системы. Он состоит из двух полушарий и червя, находящегося между ними. Наружные поверхности полушарий покрыты серым веществом - корой мозжечка, а скопления серого вещества в белом веществе образуют ядра мозжечка.

Мозжечок получает импульсы от рецепторов кожи, мышц и сухожилий через спинно-мозжечковые пути и через ядра продолговатого мозга (от спинно-бульбарного пути). Из продолговатого мозга в мозжечок поступают также вестибулярные влияния, а из среднего мозга-зрительные и слуховые. Корково-мосто-мозжечковый путь связывает мозжечок с корой больших полушарий. В коре мозжечка представительство различных периферических рецепторов имеет соматотопическую организацию. Кроме того, наблюдается упорядоченность связей этих зон с соответствующими воспринимающими областями коры. Так, зрительная зона мозжечка связана со зрительной зоной коры, представительство каждой группы мышц в мозжечке - с представительством одноименных мышц в коре и т. д. Такое соответствие облегчает совместную деятельность мозжечка и коры в управлении различными функциями организма.

Эфферентные импульсы от мозжечка поступают к красным ядрам ретикулярной формации, продолговатому мозгу, таламусу, коре и подкорковым ядрам.

Мозжечок участвует в регуляции двигательной деятельности. Электрические раздражения поверхности мозжечка вызывают движения глаз, головы и конечностей, которые отличаются от корковых моторных эффектов тоническим характером и большой длительностью. Мозжечок регулирует изменение и перераспределение тонуса скелетных мышц, что необходимо для организации нормальной позы и двигательных актов.

Функции мозжечка изучались в клинике при его поражениях у человека, а также у животных путем удаления (экстирпации мозжечка) (Л. Лючиани, Л. А. Орбели). В результате выпадения функций мозжечка возникают двигательные расстройства: атония- резкое падение и неправильное распределение тонуса мышц, астазия - невозможность сохранения неподвижного положения, непрерывные качательные движения, дрожание головы, туловища и конечностей, астения - повышенная утомляемость мышц, атаксия - нарушение координированных движений, походки и др.

Мозжечок оказывает влияние также на ряд вегетативных функций, например желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.

Таким образом, в мозжечке происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных и вестибулярных. Мозжечок даже ранее считали центром равновесия и регуляции мышечного тонуса. Однако его функции, как оказалось, гораздо обширнее-охватывают также регуляцию деятельности вегетативных органов. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий, под ее контролем.

Функции ретикулярной формации. Различают два основных типа влияния неспецифической системы на работу других нервных центров - активирующее и тормозящее влияния. Оба они могут адресоваться как вышележащим центрам (восходящие влияния), так и нижележащим (нисходящие влияния).

Восходящие влияния. В опытах на животных было показано, что из сетевидного образования среднего мозга исходит мощное активирующее влияние на кору больших полушарий. Электрические раздражения этих отделов неспецифической системы через вживленные электроды вызывали пробуждение спящего животного. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие.

Нисходящие влияния. Все отделы неспецифической системы оказывают помимо восходящих значительные нисходящие влияния. Отделы ствола мозга регулируют (активируют или угнетают) активность нейронов спинного мозга и проприорецепторов мышц (мышечных веретен). Эти влияния совместно с воздействиями из экстрапирамидной системы и мозжечка играют большую роль в регуляции тонуса мышц и обеспечении позы человека. Непосредственные команды к осуществлению движений и влияния, формирующие перестройки тонуса мышц, передаются по специфическим путям. Однако неспецифические влияния позволяют существенно изменить протекание этих реакций. При усилении активирующих воздействий из ретикулярной формации среднего мозга на нейроны спинного мозга увеличивается амплитуда производимых движений и повышается тонус скелетных мышц. Включение этих влияний при некоторых эмоциональных состояниях помогает повысить эффективность двигательной деятельности человека и выполнить значительно большую работу, чем в обычных условиях.

Возникновение эмоций, а также поведенческие реакции связывают с деятельностью лимбической системы, в которую входят некоторые подкорковые образования и участки коры. Корковые отделы лимбической системы, представляющие ее высший отдел находятся на нижних и внутренних поверхностях больших полушарий (поясная извилина, гиппокамп и др.). К подкорковым структурам лимбической системы относят также грушевидную долю, обонятельную луковицу и тракт, миндалевидное ядро, гипоталамус, некоторые ядра таламуса, среднего мозга и ретикулярной формации. Между всеми этими образованиями имеются тесные прямые и обратные связи образующие «лимбическое кольцо».

Лимбическая система участвует в самых разнообразных проявлениях деятельности организма. Она формирует положительные и отрицательные эмоции со всеми двигательными, вегетативными и эндокринными их компонентами (изменением дыхания, сердцебиения кровяного давления, деятельности желез внутренней секреции, скелетных и мимических мышц и др.). От нее зависит эмоциональная окраска психических процессов и изменения двигательной активности. Она создает мотивацию поведения (определенную предрасположенность ). Возникновение эмоций имеет «оценочное влияние» на деятельность специфических систем, так как, подкрепляя определенные способы действий, пути решения поставленных задач, они обеспечивают избирательный характер поведения в ситуациях со многими выборами. Области коры, относящиеся к лимбической системе (нижние и внутренние части коры), обеспечивают эмоциональную окраску движений и управляют вегетативными реакциями организма при работе.

Лимбическая система участвует в формировании ориентировочных и условных рефлексов. Благодаря центрам лимбической системы могут вырабатываться даже без участия других отделов коры оборонительные и пищевые условные рефлексы. При поражениях этой системы затрудняется упрочение условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление (чрезмерно повышенная двигательная активность и т. д.). Известно, что так называемые психотропные вещества, изменяющие нормальную психическую деятельность человека, действуют именно на структуры лимбической системы. Таким образом, лимбическая система задает общий контекст поведения, в зависимости от условий, переводя в нужное предрасположенное состояние- эмоцию. Направленность эмоции (положительная или отрицательна) и определяет вид формирующегося рефлекса и более сложной реакции. Лимбическая система обусловливает эмоциональный настрой и побуждение к действию, а также процессы научения и памяти. Лимбика придает информации от внутренней среды и окружающего мира то особое значение, которое она имеет для каждого человека и тем самым определяет его целенаправленную деятельность.

Электрические раздражения различных участков лимбической системы через вживленные электроды (в эксперименте на животных и в клинике в процессе лечения больных) выявили наличие центров удовольствия, формирующих положительные эмоции, и центров неудовольствия, формирующих отрицательные эмоции. Изолированное раздражение таких точек в глубоких структурах мозга человека вызывало появление чувства «беспричинной радости», «беспредметной тоски», «безотчетного страха».

Кора больших полушарий:

Общий план организации коры. Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейронов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м 2 . Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.

Корковые нейроны и их связи. Несмотря на огромное число нейронов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейроны. В афферентной функции коры и в процессах переключения возбуждения на соседние нейроны основная роль принадлежит звездчатым нейронам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксоны, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендриты. Звездчатые нейроны участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейронов.

Пирамидные нейроны осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит, через который в клетку поступают различные афферентные влияния от других нейронов, а вертикально вниз отходит эфферентный отросток - аксон.

Многочисленность контактов (например, только на дендритах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейронов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейронных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.

Распространение возбуждения в поперечном направлении-от одной вертикальной колонки к другой - ограничено процессами торможения. Возникновение активности в вертикальной колонке приводит к возбуждению спинальных мотонейронов и сокращению связанных с ними мышц. Этот путь используется, в частности, при произвольном управлении движениями конечностей.

Первичные, вторичные и третичные поля коры. Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: сенсорные, ассоциативные и моторные поля.

Сенсорные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенезе, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности находится в задней центральной извилине коры, зрительное поле(пол 17 и 18) в затылочной области, слуховое поле(поле 41) в височной области и двигательное поле(поле 6) в передней центральной извилине коры. Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов. При разрушении сенсорных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены ассоциативные поля, которые связаны с отдельными органами только через сенсорные зоны. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении ассоциативных зон сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Сенсорные и ассоциативные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейроны. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях. Разделение нейронов коры на поля, области и зоны называется функциональной мозаикой. Автором такого разделения является Бродман.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарий.

Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражений (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

Несмотря на анатомическую одинаковость обоих полушарий переднего мозга они функционально отличаются. Восходящие и нисходящие пути от головного мозга переходят на противоположную половину тела и поэтому левое полушарие отвечает за соматическую чувствительность и движения правой половины тела и наоборот. Также вследствие перекреста зрительных путей правая половина зрительного поля проецируется в левое полушарие, а левая половина – в правое. Изолированное правое полушарие обладает памятью, способностью к зрительному или тактильному распознаванию предметов, абстрактному мышлению и к слабому пониманию речи(выполнение слуховых команд и чтение простейших слов). В правом полушарии лучше развиты: распознавание лиц, пространственное построение и восприятие музыки. Левое полушарие является доминантным по отношению к правому. Оно обеспечивает речь и сознание, вербально – рассудочную деятельность, временные характеристики и связи событий. При его повреждении страдает логическое смысловое мышление.

Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке Современные электроэнцефалографы усиливают эти потенциалы в 2-3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ. В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8-12 колебаний в 1 сек.), в состоянии активного внимания - бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях - тэта-ритм (4-7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе - дельта-ритм (1-3 колебания в 1 сек.).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ - быстрой асинхронной активности. По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

Несмотря на совершенство процессов координации в спинном мозгу, он находится под постоянным контролем головного мозга, в первую очередь коры больших полушарий.

В организме имеются специальные механизмы, обусловливающие преимущественное воздействие коры больших полушарий на общие конечные пути к мышцам-спинальные мотонейроны. Большая эффективность кортико-спинальных влияний по сравнению с сегментарными афферентными влияниями обеспечивается, во-первых, наличием прямых путей из коры к мотонейронам спинного мозга и, во-вторых, возможностью особенно быстрой их активации корковыми импульсами. Электрофизиологическими исследованиями показано, что ритмические воздействия из двигательной области коры вызывают чрезвычайно резкое нарастание суммарной амплитуды возбуждающих постсинаптических потенциалов спинальных мотонейронов. Амплитуда каждого последующего возбуждающего постсинаптического потенциала увеличивается примерно в 6 раз больше, чем при поступлении к тем же мотонейронам импульсов от проприорецепторов по афферентным путям. Таким образом, достаточно уже 2-3 импульсов, идущих от коры, чтобы деполяризация в мотонейроне достигла порогового уровня, необходимого для возникновения ответного разряда в скелетную мышцу. В результате кора больших полушарий может вызывать двигательные действия быстрее, чем периферические раздражения, и часто даже вопреки им.

В коре больших полушарий происходит выработка цели и задачи движений, соответственно этому строится и программа конкретных действий, которые нужны человеку для осуществления цели. В сложные поведенческие акты включаются не только моторные компоненты, но и необходимые вегетативные компоненты. Еще до начала движении кора больших полушарий повышает активность тех вставочных и моторных нейронов спинного мозга, которым предстоит участвовать в движении. В предстартовый период перед началом циклических движений в электрической активности коры происходит настройка на темп предстоящих движений. В тот момент, когда производится движение, кора тормозит деятельность всех посторонних афферентных путей и оказывается особенно восприимчивой к сигналам от рецепторов мышц, сухожилий и суставных сумок.

В организации двигательного акта участвуют самые различные отделы коры больших полушарий. Моторная зона коры (поле 4) посылает импульсы к отдельным мышцам, преимущественно к дистальным мышцам конечностей. Объединение отдельных элементов движения в целостный акт осуществляют вторичные поля (6-е и 8-е) премоторной области. Они определяют последовательность двигательных актов, формируют ритмические серии движении, регулируют тонус мышц. Задняя центральная извилина коры - общечувствительная область-обеспечивает субъективное ощущение движения. Здесь имеются нейроны, сигнализирующие только о возникновении движений в суставе, и нейроны, постоянно информирующие мозг о положении конечности (нейроны движения и нейроны положения).

К пространственной организации движений прямое отношение имеют задние третичные поля - нижнетеменные и теменно-затылочно-височные области коры. С их участием производится оценка удаленности и расположения предметов, оценка расположения отдельных частей собственного тела в пространстве и др. При поражении этих областей у человека теряется представление о «схеме тела» (о том, где находится нос, глаз, ухо, предплечье, спина, как опустить, например, «руки по швам»). Нарушается также представление о «схеме пространства», пространственная ориентация движения. Трудности возникают при выполнении самых простых актов: человек видит стул и узнает его, но садится мимо него; он не понимает, откуда идет звук, что означает «влево», «вправо» «вперед», «назад», не может правильно есть (например, ложка с супом попадает мимо рта) и т. д. Становится невозможным использование каких-либо орудий для трудовой или спортивной деятельности.

В высшей регуляции произвольных движений важнейшая роль принадлежит лобным долям. В третичных полях лобной коры про. исходит сознательное программирование произвольных движений определение цели поведения, двигательных задач и необходимых для их выполнения двигательных актов, а также сопоставление намеченной программы с результатами ее реализации. При регуляции лобными долями движений используется вторая сигнальная система. Движения программируются в ответ на поступающие извне словесные сигналы (словесные указания тренера, спортивные команды я пр.), а также благодаря участию внешней и внутренней речи (мышления) самого человека.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30