«Жидкостное дыхание» пока годится только для собак. «РГ»: жидкостное дыхание под водой возможно

Внешняя

«Далеко не все так просто, как было представлено сегодня. Бедная собачка». Такими словами специалисты комментируют эксперимент, продемонстрированный Дмитрием Рогозиным президенту Сербии как пример новейших научных разработок России: собака смогла дышать не воздухом, а жидкостью. Что представляет собой эта технология и может ли она помочь российским военным?

В ходе встречи в Москве с президентом Сербии Александром Вучичем вице-премьер Дмитрий Рогозин во вторник ряд новейших разработок российского Фонда перспективных исследований (ФПИ). Рогозин отметил, что сербского гостя могли бы свозить на какое-нибудь огромное промышленное предприятие, но куда интереснее «показать тот самый завтрашний день, куда мы стремимся». Таким «гвоздем программы» стал уникальный проект жидкостного дыхания, который был впервые продемонстрирован публично.

Как пояснил руководитель проекта военно-морской врач Федор Арсеньев, задача данного изобретения состоит в спасении экипажа гибнущей подводной лодки. Как известно, с глубины ниже 100 метров невозможно быстро подняться на поверхность из-за кессонной болезни. Чтобы избежать ее, на подлодке можно будет надеть аппарат с «не содержащей азота жидкостью», как передал ТАСС . Легкие человека при этом не будут сжиматься, что позволит быстро подняться на поверхность и спастись.

На глазах у сербского президента в особый резервуар с жидкостью была помещена собака – такса. За несколько минут она освоилась и начала самостоятельно «дышать» жидкостью. После сотрудники лаборатории вынули пса из резервуара, вытерли полотенцем, и президент Сербии смог лично убедиться, что собака в порядке. Вучич погладил пса и признался, что очень впечатлен.

Мечта про «человека-амфибию»

«Жидкостное дыхание как медицинская технология подразумевает вентиляцию легких не воздухом, а насыщенной кислородом жидкостью. В рамках проекта решается научная задача по изучению особенностей влияния различных переносящих кислород веществ на газообмен и другие функции клеток, тканей и органов млекопитающих», – рассказали газете ВЗГЛЯД в отделе по связям с общественностью Фонда перспективных исследований (ФПИ).

Одним из направлений является формирование медико-биологических основ технологии самостоятельной эвакуации подводников с больших глубин на поверхность, отметили в ФПИ, но технология способна вообще заметно продвинуть исследование человеком ранее не изученных морских и океанских глубин. Утверждается, что данная разработка понадобится и в медицине – например, поможет выходить недоношенных детей или людей, получивших ожоги дыхательных путей, найдет применение в лечении бронхообструктивных, инфекционных и других тяжелых заболеваний.

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны хорошо растворять кислород и углекислый газ.

«Жидкостное дыхание» давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен спасать аквалангистов и подводников, а в перспективе пригодится в длительных космических полетах. Разработки велись в 1970–1980-е годы в СССР и США, эксперименты проводились на животных, но больших успехов добиться не удалось.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, признавался ранее газете «Совершенно секретно» , что о разработках практически ничего нельзя говорить из-за их закрытости. Но то, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Напомним, ранее сообщалось о других смелых проектах ФПИ, в частности это «конструктор» для создания и самолета будущего.

Наверху должна ждать реанимация

«Технология не один десяток лет отрабатывалась, но для этого нужны очень хорошо подготовленные люди. Когда человеку вливают в легкие эту жидкость – будет автоматически срабатывать инстинкт самосохранения, спазмы перекрывают горло, организм сопротивляется изо всех сил. Обычно это делается под наблюдением врачей. На людях такие опыты проводились в единичных случаях, а в основном они отрабатывались на животных», – пояснил газете ВЗГЛЯД глава Комитета при правительстве РФ по проведению подводных работ особого назначения в 1992–1994 гг., доктор технических наук, профессор, вице-адмирал Тенгиз Борисов.

«Как правило, вставляется в гортань специальная трубка, с помощью которой легкие медленно заполняются этой жидкостью, – сказал Борисов, добавив:

– При этом организм всячески сопротивляется, нужны препараты, которые блокируют спазмы, нужны анестетики. Далеко не все так просто, как было представлено сегодня. Бедная собачка».

«Если человек всплывет из подводной лодки, то он действительно избежит кессонной болезни, но самостоятельно спасаться подводники в любом случае не смогут. Нужно: а) исключительно грамотные люди на подводной лодке, б) наверху должна ждать, грубо говоря, команда реанимации, которая будет выкачивать из человека эту жидкость и заставлять его дышать обычным способом», – добавил эксперт.

«Думаю, в медицине эту технологию куда легче внедрить и применять в условиях стационара, когда рядом есть специалисты и большое количество необходимой аппаратуры. А вот спасение экипажа затонувшей субмарины такими методами в обозримом будущем крайне маловероятно», – заключил Борисов.

December 28th, 2017

С тех пор как в 2016 году Фонд перспективных исследований (ФПИ) одобрил проект жидкостного дыхания, общественность живо интересуется его успехами. Недавняя демонстрация возможностей этой технологии буквально взорвала интернет. На встрече зампреда правительства Дмитрия Рогозина с президентом Сербии Александром Вучичем таксу погрузили на две минуты в аквариум со специальной жидкостью, насыщенной кислородом. После процедуры собака, по словам вице-премьера, жива и здорова.

Лично мне конечно непонятно, почему толпы жалеющих собаку в соцсетях не кидаются защищать например мышей и кроликов, которые вообще то гибнут пачками в институтах. А еще интересно, они считают например Королева тоже жестоким и бессердечным - он то не одну собаку подарил во благо человечества. А вот , а . Ну ладно, мы не об этом вообще то.

Что это была за жидкость? Можно ли дышать жидкостью? И как обстоят дела в этой сфере научных исследований?

Чтобы было понятно, почему открытие называют настоящим прорывом. Еще в конце 80-х годов жидкостное дыхание считалось научной фантастикой. Им пользовались герои фильма американского режиссера Джеймса Кэмерона "Бездна". И даже в картине оно называлось экспериментальной разработкой.

Научить человека и животных дышать жидкостью пытались давно. Первые опыты в 60-х были неудачными, подопытные мыши жили очень недолго. На людях технику жидкостной вентиляции легких проверяли один единственный раз в США, для спасения недоношенных детей. Однако ни одного из трех младенцев не удалось реанимировать.

Тогда для доставки кислорода в легкие использовали перфторан, его еще применяют в качестве кровезаменителей. Основной проблемой было то, что эту жидкость не удавалось достаточным образом очистить. В ней плохо растворялся углекислый газ, и для длительного дыхания нужна была принудительная вентиляция легких. В покое мужчина обычной комплекции среднего роста должен был пропускать через себя 5 литров жидкости в минуту, при нагрузках - 10 литров в минуту. Легкие для таких нагрузок не приспособлены. Нашим исследователям удалось эту проблему решить.

Жидкостное дыхание, жидкостная вентиляция лёгких — дыхание с помощью хорошо растворяющей кислород жидкости. На настоящий момент проводились лишь отдельные эксперименты подобных технологий.

Жидкостное дыхание предполагает заполнение лёгких жидкостью, насыщенной растворённым кислородом, который проникает в кровь. Наиболее подходящими веществами для этой цели рассматриваются перфторуглеродные соединения, хорошо растворяющие кислород и углекислый газ, имеющие низкое поверхностное натяжение, высокоинертные, и не метаболизирующиеся в организме.

Частичная жидкостная вентиляция лёгких в настоящее время находится в стадии клинических испытаний при различных нарушениях дыхания. Разработано несколько способов жидкостной вентиляции лёгких, в том числе вентиляции с помощью паров и аэрозолей перфторуглеродов.

Полная жидкостная вентиляция лёгких заключается в полном заполнении лёгких жидкостью. Эксперименты по полной жидкостной вентиляции лёгких проводились на животных в 1970 — 1980-е годы в СССР и США. Например, в 1975 г. в институте сердечно-сосудистой хирургии им. А. Н. Бакулева профессор Ф. Ф. Белоярцев впервые в стране выполнил работы по длительной внелёгочной оксигенации с использованием фторуглеродных оксигенаторов и по замене газовой среды в лёгких на жидкий перфторуглерод. Однако, данные эксперименты до сих пор не вышли из этой стадии. Это связано с тем, что изученные соединения, пригодные для жидкостной вентиляции лёгких, обладают рядом недостатков, которые значительно ограничивают их применимость. В частности, не было найдено методов, которые могли бы применяться продолжительно.

Предполагается, что жидкостное дыхание может использоваться при глубоководных погружениях, космических полётах, в качестве одного из средств в комплексной терапии некоторых болезней.

В РФ экспериментами и разработками в области жидкостного дыхания занимается ученый, врач, разработчик технологии и изобретатель аппарата "Жидкостного дыхания" Андрей Викторович Филиппенко. Разработки ученого известны, как в России, так и за рубежом. Филиппенко - действующий кандидат медицинских наук, специалист по жидкостному дыханию, патофизиологии легких, восстановительной медицине, фармакологическим испытаниям и разработке медицинских приборов. Выпустил более 20 научно-технических отчетов и опубликовал около 30 научных статей в российской и зарубежной печати. Выступал на множестве конференций по теме жидкостного дыхания и спасения подводников, в том числе в России, Германии, Бельгии, Швеции, Великобритании и Испании. Имеет авторские свидетельства на метод ультразвуковой локации декомпрессионных газовых пузырьков и др. В 2014 году Андрей Викторович Филиппенко заключил договор с Фондом перспективных исследований, работа с которым продлилась вплоть до 2016 года.

"Ученые синтезировали несуществующие в природе вещества — перфторуглероды, в которых межмолекулярные силы настолько малы, что их считают чем-то промежуточным между жидкостью и газом. Они растворяют в себе кислород в 18-20 раз больше, чем вода", — рассказывает доктор медицинских наук Евгений Маевский, профессор, заведующий лабораторией энергетики биологических систем Института теоретической и экспериментальной биофизики РАН, один из создателей перфторана, так называемой голубой крови. Он работает над медицинскими приложениями перфторуглеродов с 1979 года.

При парциальном давлении в одну атмосферу в 100 миллилитрах воды растворяется всего 2,3 миллилитра кислорода. При тех же условиях перфторуглероды могут содержать до 50 миллилитров кислорода. Это делает их потенциально пригодными для дыхания.

"Например, при погружении на глубину через каждые 10 метров давление увеличивается как минимум на одну атмосферу. В итоге грудная клетка и легкие сожмутся до такой степени, что дышать в газовой среде станет невозможно. А если в легких находится переносящая газ жидкость, существенно большей плотности, чем воздух и даже вода, то они смогут функционировать. В перфторуглеродах можно растворить кислород без примеси азота, которого много в воздухе и растворение которого в тканях является одной из наиболее существенных причин кессонной болезни при подъеме с глубины", — продолжает Маевский.

Кислород будет поступать в кровь из жидкости, наполняющей легкие. В ней же может растворяться переносимый кровью углекислый газ.

Принцип дыхания жидкостью прекрасно освоен рыбами. Их жабры пропускают через себя колоссальный объем воды, забирают растворенный там кислород и отдают в кровь. У человека нет жабр, а весь газообмен идет через легкие, площадь поверхности которых примерно в 45 раз превосходит площадь поверхности тела. Чтобы прогнать через них воздух, мы делаем вдох и выдох. В этом нам помогают дыхательные мышцы. Поскольку перфторуглероды плотнее, чем воздух, то дышать на поверхности с их помощью весьма проблематично.

"В этом и состоят наука и искусство подобрать такие перфторуглероды, чтобы облегчить работу дыхательных мышц и не допустить повреждения легких. Многое зависит от длительности процесса дыхания жидкостью, от того, насильственно или спонтанно оно происходит", — заключает исследователь.

Однако принципиальных препятствий к тому, чтобы человек дышал жидкостью, нет. Евгений Маевский полагает, что продемонстрированную технологию российские ученые доведут до практического применения в ближайшие несколько лет.

От реанимации до спасения подводников

Ученые стали рассматривать перфторуглероды как альтернативу дыхательным газовым смесям в середине прошлого века. В 1962 году вышла статья голландского исследователя Йоханнеса Килстры (Johannes Kylstra) "О мышах-рыбах" (Of mice as fish), где описан опыт с грызуном, помещенным в насыщенный кислородом солевой раствор при давлении 160 атмосфер. Животное оставалось живым в течение 18 часов. Затем Килстра стал экспериментировать с перфторуглеродами, и уже в 1966 году в детском госпитале Кливленда (США) физиолог Леланд Кларк (Leland C. Clark) попытался применить их, чтобы наладить дыхание новорожденных, больных муковисцидозом. Это генетическое заболевание, при котором ребенок рождается с недоразвитыми легкими, его альвеолы схлопываются, что препятствует дыханию. Легкие таких пациентов промывают физраствором, насыщенным кислородом. Кларк решил, что лучше делать это кислородсодержащей жидкостью. Этот исследователь впоследствии много сделал для развития жидкостного дыхания.

В начале 1970-х "дыхательной" жидкостью заинтересовались в СССР, в значительной мере благодаря руководителю лаборатории ленинградского НИИ переливания крови Зое Александровне Чаплыгиной. Этот институт стал одним из лидеров проекта по созданию кровезаменителей — переносчиков кислорода на основе эмульсий перфторуглеродов и растворов модифицированного гемоглобина.

Над применением этих веществ для промывания легких активно работали в Институте сердечно-сосудистой хирургии Феликс Белоярцев и Халид Хапий.

"В наших экспериментах у мелких животных несколько страдали легкие, но все они выживали", — вспоминает Евгений Маевский.

Систему дыхания с помощью жидкости разрабатывали по закрытой тематике в институтах Ленинграда и Москвы, а с 2008 года — на кафедре аэрогидродинамики Самарского государственного аэрокосмического университета. Там сделали капсулу типа "Русалка" для отработки жидкостного дыхания в случае экстренного спасения подводников с большой глубины. С 2015 года разработку испытывали в Севастополе по теме "Терек", поддерживаемой ФПИ.

Наследие атомного проекта

Перфторуглероды (перфторуглеводороды) — это органические соединения, где все атомы водорода замещены на атомы фтора. Это подчеркивает латинская приставка "пер-", означающая завершенность, целостность. Эти вещества не обнаружены в природе. Их пытались синтезировать еще в конце XIX века, но реально преуспели только после Второй мировой, когда они понадобились для атомной промышленности. Их производство в СССР наладил академик Иван Людвигович Кнунянц, основатель лаборатории фторорганических соединений в ИНЭОС РАН.

"Перфторуглероды использовали в технологии получения обогащенного урана. В СССР их крупнейшим разработчиком был Государственный институт прикладной химии в Ленинграде. В настоящее время их выпускают в Кирово-Чепецке и Перми", — говорит Маевский.

Внешне жидкие перфторуглероды выглядят как вода, но ощутимо более плотные. Они не вступают в реакцию с щелочами и кислотами, не окисляются, разлагаются при температуре более 600 градусов. Фактически их считают химически инертными соединениями. Благодаря этим свойствам перфторуглеродные материалы применяют в реанимационной и регенеративной медицине.

"Есть такая операция — бронхиальный лаваж, когда человеку под наркозом промывают одно легкое, а потом другое. В начале 80-х вместе с волгоградским хирургом А. П. Савиным мы пришли к выводу, что эту процедуру лучше делать перфторуглеродом в виде эмульсии", — приводит пример Евгений Маевский.

Эти вещества активно применяют в офтальмологии, для ускорения заживления ран, при диагностике заболеваний, в том числе онкологических. В последние годы метод ЯМР-диагностики с применением перфторуглеродов разрабатывают за рубежом. В нашей стране эти исследования успешно проводит коллектив ученых из МГУ им. М. В. Ломоносова под руководством академика Алексея Хохлова, ИНЭОС, ИТЭБ РАН и ИИФ (Серпухов).

Нельзя не упомянуть и то, что из этих веществ делают масла, смазки для систем, работающих в условиях высоких температур, включая реактивные двигатели.

Источники:

Научные исследования не прекращаются ни на день, прогресс идёт, давая человечеству всё новые и новые открытия. Сотни учёных и их помощников трудятся на поприще изучения живых существ и синтеза необычных веществ. Целые отделы ставят эксперименты, проверяя различные теории, и порой открытия поражают воображение - ведь то, о чём можно было только мечтать, может стать реальностью. Они развивают идеи, и вопросы о заморозке человека в криокамере с последующей разморозкой через столетие либо о возможности дышать жидкостью для них не просто фантастический сюжет. Их кропотливый труд может претворить эти фантазии в жизнь.

Учёных давно волнует вопрос: может ли человек дышать жидкостью?

Нужно ли человеку жидкостное дыхание

Не жалеются ни силы, ни время, ни денежные средства на такие исследования. И один из таких вопросов, волнующих самые просвещённые умы на протяжении десятилетий, звучит следующим образом - а возможно ли для человека жидкостное дыхание? Смогут ли лёгкие усваивать кислород не , а из специальной жидкости? Для тех, кто усомнится в реальной необходимости такого типа дыхания, можем привести как минимум 3 перспективных направления, где оно послужит человеку добрую службу. Если, конечно же, это смогут реализовать.

  • Первое направление - это погружение на большие глубины. Как известно, при нырянии водолаз испытывает действие давления водной среды, которая в 800 раз плотнее воздуха. И оно возрастает на 1 атмосферу каждые 10 метров глубины. Такое резкое повышение давления чревато очень неприятным эффектом - газы, растворённые в крови, начинают закипать в виде пузырьков. Это явление называют «кессонной болезнью», ею часто страдают те, кто активно занимается . Также при глубоководных заплывах есть риск получить кислородное или азотное отравление, так как в таких условиях эти жизненно необходимые нам газы становятся очень токсичными. Для того чтобы хоть как-то бороться с этим, используют либо специальные смеси для дыхания, либо жёсткие скафандры, поддерживающие внутри себя давление в 1 атмосферу. Но если бы жидкостное дыхание было возможно - оно бы стало третьим, наиболее лёгким решением проблемы, ведь дыхательная жидкость не насыщает организм азотом и инертными газами, да и необходимость в долгой декомпрессии отпадает.
  • Второй путь применения - это медицина. Применения жидкостей для дыхания в ней могло бы спасать жизни недоношенных младенцев, ведь их бронхи недоразвиты и аппараты искусственной вентиляции лёгких могут легко их повредить. Как известно, в утробе матери лёгкие эмбриона заполнены жидкостью и к моменту рождения у него накапливается лёгочный сурфактант - смесь веществ, не дающая слипаться тканям при дыхании воздухом. Но при досрочном рождении дыхание требует у младенца слишком много сил и это может закончиться летальным исходом.

История имеет прецедент использования метода полной жидкостной вентиляции лёгких, и датируется он 1989 годом. Применил его Т. Шаффер, работавший педиатром в Темпльском университете (США), спасая недоношенных детей от смерти. Увы, попытка успехом не увенчалась, трое маленьких пациентов не выжили, но стоит упомянуть, что смерти были вызваны иными причинами, а не самим методом дыхания жидкостью.

С тех пор полностью вентилировать лёгкие человека не осмеливались, но в 90-х годах пациенты с тяжёлой формой воспалений были подвергнуты частичной жидкостной вентиляции. В этом случае лёгкие заполняются лишь частично. Увы, эффективность метода была спорной, так как обычная воздушная вентиляция работала не хуже.

  • Применение в космонавтике. При нынешнем уровне технологий, космонавт при полёте испытывает перегрузки, достигающие 10 g. После этого порога невозможно сохранить не то чтобы работоспособность, но и сознание. Да и нагрузка на организм идёт неравномерно, а по точкам опоры, которые при погружении в жидкость можно исключить - давление будет распространяться одинаково по всем точкам организма. Этот принцип положен в основу проектировки жёсткого скафандра Libelle, наполненного водой и позволяющего повысить предел до 15–20 g, да и то из-за ограничения плотности тканей человека. А если не только погрузить космонавта в жидкость, но и заполнить ею лёгкие, то для него будет возможно легко переносить экстремальные перегрузки далеко за отметкой в 20 g. Не бесконечные, разумеется, но порог будет очень высок, если будет соблюдено одно условие - жидкость в лёгких и вокруг тела должна быть равна по плотности воде.

Зарождение и развитие жидкостного дыхания

Самые первые эксперименты датируются 60-ми годами прошлого столетия. Первыми испытали зарождающуюся технологию жидкостного дыхания лабораторные мыши и крысы, вынужденные дышать не воздухом, а солёным раствором, который был под давлением в 160 атмосфер. И они дышали! Но была проблема, которая не дала им выжить в такой среде долго - жидкость не позволяла отводить углекислый газ.

Но на этом эксперименты не прекратились. Далее, начали проводить исследования органических веществ, чьи атомы водорода заменялись атомами фтора - так называемых перфторуглеводородов. Результаты были намного лучше, чем у древней и примитивной жидкости, ведь перфторуглеводород инертен, не усваивается организмом, прекрасно растворяет кислород и водород. Но до совершенства было далеко и исследования в этом направлении продолжились.

Сейчас самым лучшим достижением в этой сфере является перфлуброн (коммерческое название - «Ликвивент»). Свойства этой жидкости поразительны:

  1. Альвеолы раскрываются лучше при попадании в лёгкие этой жидкости и газообмен улучшается.
  2. Эта жидкость может нести в 2 раза больше кислорода по сравнению с воздухом.
  3. Низкая температура кипения позволяет удалять её из лёгких выпариванием.

Но наши лёгкие не предназначены для полностью жидкостного дыхания. Если заполнять их перфлуброном полностью - потребуется мембранный оксигенатор, нагревающий элемент и вентиляция воздухом. И не стоит забывать, что эта смесь в 2 раза гуще воды. Потому применяют смешанное вентилирование, при котором лёгкие заполняются жидкостью лишь на 40%.

Но почему мы не можем дышать жидкостью? Всё из-за углекислого газа, который очень плохо удаляется в жидкостной среде. Человек весом в 70 кг должен прогонять 5 л смеси через себя ежеминутно, и это при спокойном состоянии. Потому, хоть наши лёгкие технически способны извлекать кислород из жидкостей, они слишком слабы. Так что можно лишь надеяться на исследования будущего.

Вода как воздух

Для того чтобы наконец с гордостью объявить миру - «Теперь человек может дышать под водой!» - учёные порой разрабатывали поразительные устройства. Так, в 1976 году биохимики из Америки создали чудо-устройство, способное регенерировать кислород из воды и обеспечивать им ныряльщика. При достаточной ёмкости батарей ныряльщик мог находиться и дышать на глубине практически бесконечно.

А началось всё с того, что ученые начали исследования на основе того факта, что гемоглобин одинаково хорошо доставляет воздух как из жабр, так и из лёгких. Ими была использована собственная венозная кровь, смешанная с полиуретаном - её погружали в воду и эта жидкость поглощала кислород, который щедро растворён в воде. Далее, кровь была заменена спецматериалом и в итоге получился прибор, что действовал как обычные жабры любой рыбёшки. Судьба изобретения такова: его приобрела некая компания, потратив на это 1 миллион долларов, и с тех пор о приборе ничего не было слышно. И в продажу, разумеется, он не поступил.

Но не это является главной целью учёных. Их мечта не устройство для дыхания, они хотят научить самого человека дышать жидкостью. И попытки осуществить эту мечту не оставлены до сих пор. Так, один из НИИ России, например, провёл испытания по жидкостному дыханию на добровольце, имеющем врождённую патологию - отсутствие гортани. А это означало, что у него просто отсутствовала реакция организма на жидкость, при которой попадание малейшей капли воды на бронхи сопровождается сжатием глоточного кольца и удушьем. Так как этой мышцы у него просто не было, эксперимент прошёл удачно. Ему залили в лёгкие жидкость, которую он перемешивал на протяжении эксперимента при помощи движений живота, после чего её спокойно и безопасно откачали. Характерно, что солевой состав жидкости соответствовал солевому составу крови. Это можно считать успехом, и учёные утверждают, что вскоре найдут способ жидкостного дыхания, доступный людям без патологий.

Так миф или реальность?

Несмотря на упорство человека, страстно желающего покорить все возможные среды обитания, природа пока сама распоряжается, где кому жить. Увы, как бы много времени ни ушло на исследования, сколько миллионов бы ни потратили - но вряд ли человеку суждено дышать под водой так же хорошо, как и на суше. Люди и морские обитатели, конечно, имеют немало общего, но различий всё-таки намного больше. Человек-амфибия не вынес бы условий океана, а если бы сумел приспособиться - то дорога назад, на сушу, была бы для него закрыта. И как с аквалангами водолазы, так бы на пляж выходили бы в водных скафандрах люди-амфибии. И потому, чтобы не говорили энтузиасты, вердикт учёных пока твёрд и неутешителен - долгая жизнедеятельность человека под водой невозможна, идти против матери-природы в этом плане неразумно и все попытки жидкостного дыхания обречены на провал.

Но не стоит унывать. Хоть дно морское никогда не станет для нас родным домом, у нас есть все механизмы организма и технические возможности, для того чтобы бывать на нём частыми гостями. Так стоит ли об этом грустить? Ведь эти среды в определённой мере уже покорены человеком и теперь перед ним лежат бездны космического пространства.

И пока можно с уверенностью сказать, что глубины океана станут для нас прекрасным рабочим местом. Но упорство может привести к очень тонкой грани реального дыхания под водой, стоит лишь трудиться над решением этой задачи. А каков будет ответ на вопрос, менять ли наземную цивилизацию на подводную, зависит только лишь от самого человека.

МОСКВА, 25 дек — РИА Новости, Татьяна Пичугина. С тех пор как в 2016 году Фонд перспективных исследований (ФПИ) одобрил проект жидкостного дыхания, общественность живо интересуется его успехами. Недавняя демонстрация возможностей этой технологии буквально взорвала интернет. На встрече зампреда правительства Дмитрия Рогозина с президентом Сербии Александром Вучичем таксу погрузили на две минуты в аквариум со специальной жидкостью, насыщенной кислородом. После процедуры собака, по словам вице-премьера, жива и здорова. Что это была за жидкость?

"Ученые синтезировали несуществующие в природе вещества — перфторуглероды, в которых межмолекулярные силы настолько малы, что их считают чем-то промежуточным между жидкостью и газом. Они растворяют в себе кислород в 18-20 раз больше, чем вода", — рассказывает доктор медицинских наук Евгений Маевский, профессор, заведующий лабораторией энергетики биологических систем Института теоретической и экспериментальной биофизики РАН, один из создателей перфторана, так называемой голубой крови. Он работает над медицинскими приложениями перфторуглеродов с 1979 года.

При парциальном давлении в одну атмосферу в 100 миллилитрах воды растворяется всего 2,3 миллилитра кислорода. При тех же условиях перфторуглероды могут содержать до 50 миллилитров кислорода. Это делает их потенциально пригодными для дыхания.

"Например, при погружении на глубину через каждые 10 метров давление увеличивается как минимум на одну атмосферу. В итоге грудная клетка и легкие сожмутся до такой степени, что дышать в газовой среде станет невозможно. А если в легких находится переносящая газ жидкость, существенно большей плотности, чем воздух и даже вода, то они смогут функционировать. В перфторуглеродах можно растворить кислород без примеси азота, которого много в воздухе и растворение которого в тканях является одной из наиболее существенных причин кессонной болезни при подъеме с глубины", — продолжает Маевский.

Кислород будет поступать в кровь из жидкости, наполняющей легкие. В ней же может растворяться переносимый кровью углекислый газ.

Принцип дыхания жидкостью прекрасно освоен рыбами. Их жабры пропускают через себя колоссальный объем воды, забирают растворенный там кислород и отдают в кровь. У человека нет жабр, а весь газообмен идет через легкие, площадь поверхности которых примерно в 45 раз превосходит площадь поверхности тела. Чтобы прогнать через них воздух, мы делаем вдох и выдох. В этом нам помогают дыхательные мышцы. Поскольку перфторуглероды плотнее, чем воздух, то дышать на поверхности с их помощью весьма проблематично.

"В этом и состоят наука и искусство подобрать такие перфторуглероды, чтобы облегчить работу дыхательных мышц и не допустить повреждения легких. Многое зависит от длительности процесса дыхания жидкостью, от того, насильственно или спонтанно оно происходит", — заключает исследователь.

Однако принципиальных препятствий к тому, чтобы человек дышал жидкостью, нет. Евгений Маевский полагает, что продемонстрированную технологию российские ученые доведут до практического применения в ближайшие несколько лет.

От реанимации до спасения подводников

Ученые стали рассматривать перфторуглероды как альтернативу дыхательным газовым смесям в середине прошлого века. В 1962 году вышла голландского исследователя Йоханнеса Килстры (Johannes Kylstra) "О мышах-рыбах" (Of mice as fish), где описан опыт с грызуном, помещенным в насыщенный кислородом солевой раствор при давлении 160 атмосфер. Животное оставалось живым в течение 18 часов. Затем Килстра стал экспериментировать с перфторуглеродами, и уже в 1966 году в детском госпитале Кливленда (США) физиолог Леланд Кларк (Leland C. Clark) попытался применить их, чтобы наладить дыхание новорожденных, больных муковисцидозом. Это генетическое заболевание, при котором ребенок рождается с недоразвитыми легкими, его альвеолы схлопываются, что препятствует дыханию. Легкие таких пациентов промывают физраствором, насыщенным кислородом. Кларк решил, что лучше делать это кислородсодержащей жидкостью. Этот исследователь впоследствии много сделал для развития жидкостного дыхания.

© 20th Century Fox Film Corporation Кадр из фильма "Бездна"

© 20th Century Fox Film Corporation

В начале 1970-х "дыхательной" жидкостью заинтересовались в СССР, в значительной мере благодаря руководителю лаборатории ленинградского НИИ переливания крови Зое Александровне Чаплыгиной. Этот институт стал одним из лидеров проекта по созданию кровезаменителей — переносчиков кислорода на основе эмульсий перфторуглеродов и растворов модифицированного гемоглобина.

Над применением этих веществ для промывания легких активно работали в Институте сердечно-сосудистой хирургии Феликс Белоярцев и Халид Хапий.

"В наших экспериментах у мелких животных несколько страдали легкие, но все они выживали", — вспоминает Евгений Маевский.

Систему дыхания с помощью жидкости разрабатывали по закрытой тематике в институтах Ленинграда и Москвы, а с 2008 года — на кафедре аэрогидродинамики Самарского государственного аэрокосмического университета. Там сделали капсулу типа "Русалка" для отработки жидкостного дыхания в случае экстренного спасения подводников с большой глубины. С 2015 года разработку испытывали в Севастополе по теме "Терек", поддерживаемой ФПИ.

Наследие атомного проекта

Перфторуглероды (перфторуглеводороды) — это органические соединения, где все атомы водорода замещены на атомы фтора. Это подчеркивает латинская приставка "пер-", означающая завершенность, целостность. Эти вещества не обнаружены в природе. Их пытались синтезировать еще в конце XIX века, но реально преуспели только после Второй мировой, когда они понадобились для атомной промышленности. Их производство в СССР наладил академик Иван Людвигович Кнунянц, основатель лаборатории фторорганических соединений в ИНЭОС РАН.

"Перфторуглероды использовали в технологии получения обогащенного урана. В СССР их крупнейшим разработчиком был Государственный институт прикладной химии в Ленинграде. В настоящее время их выпускают в Кирово-Чепецке и Перми", — говорит Маевский.

Внешне жидкие перфторуглероды выглядят как вода, но ощутимо более плотные. Они не вступают в реакцию с щелочами и кислотами, не окисляются, разлагаются при температуре более 600 градусов. Фактически их считают химически инертными соединениями. Благодаря этим свойствам перфторуглеродные материалы применяют в реанимационной и регенеративной медицине.

"Есть такая операция — бронхиальный лаваж, когда человеку под наркозом промывают одно легкое, а потом другое. В начале 80-х вместе с волгоградским хирургом А. П. Савиным мы пришли к выводу, что эту процедуру лучше делать перфторуглеродом в виде эмульсии", — приводит пример Евгений Маевский.

Эти вещества активно применяют в офтальмологии, для ускорения заживления ран, при диагностике заболеваний, в том числе онкологических. В последние годы метод ЯМР-диагностики с применением перфторуглеродов разрабатывают за рубежом. В нашей стране эти исследования успешно проводит коллектив ученых из МГУ им. М. В. Ломоносова под руководством академика Алексея Хохлова, ИНЭОС, ИТЭБ РАН и ИИФ (Серпухов).

Нельзя не упомянуть и то, что из этих веществ делают масла, смазки для систем, работающих в условиях высоких температур, включая реактивные двигатели.

Тема жидкостного дыхания давно волнует умы людей - сначала фантастов, а затем и серьёзных учёных. Как выяснилось после долгих лет исследований, наши лёгкие всё же способны работать наподобие рыбьих жабр: для этого необходимо заполнить их специальной жидкостью, которая будет регулярно обновляться. Эти разработки являются победой человека над силами природы и законами физики, а понятие кессонной болезни скоро безнадёжно устареет.

Глубоководная болезнь

Декомпрессионная, или кессонная болезнь, известна с середины 19 века. Заболевание связано с тем, что в баллонах со сжатым воздухом, которыми пользуются водолазы, находится обычный по составу воздух. В нём содержится всего 20% кислорода, который наш организм полностью использует и перерабатывает в углекислый газ. Остальные 80% составляют, в основном, азот, гелий, водород и незначительные примеси. Когда дайвер быстро поднимается из глубины моря на поверхность, давление этих балластных газов изменяется. В результате они начинают выделяться в виде пузырьков в кровь и разрушать стенки клеток и кровеносных сосудов, блокировать кровоток. При тяжёлой форме декомпрессионная болезнь может привести к параличу или смерти.

Поэтому увлечённые дайвингом люди долгое время не могли себе позволить нырять глубже 70 метров, потому что это крайне опасно. На большие глубины способны погружаться лишь уникальные специалисты - их все-го несколько человек в мире. Мировой рекордсмен здесь - южно-африканец Нуно Гомес. Его погружение в 2005 году на глубину 318 метров заняло всего 14 минут, тогда как подъём продолжался около 12 часов. При этом Гомес потратил 35 баллонов (почти 450 литров) сжатого воздуха.

Группа риска включает в себя не только дайверов и рабочих, работающих в кессонах (камерах с повышенным давлением, обычно использующиеся для строительства туннелей под реками и закрепления в донном грунте опор мостов), но и пилотов на большой высоте, а так же космонавтов, использующих для выхода в открытый космос костюмы, поддерживающие низкое давление. К сожалению, заменить дыхательную смесь чистым кислородом - тоже не вариант. Он вызывает головные боли и общую слабость, а при продолжительном использовании наступает перекисное окисление липидов и активацию свободнорадикального окисления, что приводит к истощению антиоксидантов и возникновению окислительного стресса организма. А это уже практически 100%-ный риск развития онкологических заболеваний.

Первые успехи

Первые опыты, связанные с дыханием при помощи жидкости, были проведены в 1966 году на мышах. Кларк Леланд осуществил замену воздуха в легких у подопытных животных жидкими перфторуглеродными соединениями. Результаты были вполне удачными — мыши смогли дышать, будучи погруженными в жидкость на несколько часов, а затем снова дышать воздухом. Уже более 20 лет неонатологи используют подобные технологи для ухода за недоношенными младенцами. Лёгочная ткань таких детишек к рождению сформирована не до конца, поэтому с помощью специальных устройств дыхательную систему насыщают как раз кислородсодержащим раствором на основе перфторуглеродов.

Эти вещества представляют собой углеводороды, в которых все атомы водорода замещены на атомы фтора. Перфторуглероды обладают аномально высокой способностью растворять газы, например, кислород и углекислый газ. Они так же высокоинертны и не метаболизируются в организме, что позволяет использовать их не только для вентиляции лёгких, но даже в качестве искусственной крови. В последние год ведутся исследования по улучшению свойств дыхательной жидкости: новая формула получила название «перфлуброн» Это чистая, маслянистая жидкость, обладающая малой плотностью. Так как у нее весьма низкая температура кипения, она быстро и легко выводится (испаряется) из легких.

К погружению готов!

Арнольд Лэнди (Arnold Lande), бывший хирург, а ныне обычный американский пенсионер-изобретатель, зарегистрировал патент на водолазный костюм, оснащенный баллоном с «жидким воздухом». Оттуда он подаётся в шлем дайвера, заполняет собой все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. В свою очередь, углекислый газ, который выделяется в процессе дыхания, выходит наружу при помощи своеобразного подобия жабр, прикрепленных к бедренной вене ныряльщика.

Таким образом сам процесс дыхания становится попросту не нужен - кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Да и давление толщи воды на по-настоящему большой глубине слишком большое: пытаясь сделать вдох где-нибудь на дне Марианской впадины, водолаз рискует сломать рёбра. Так что во главе угла теперь стоит психологический момент: нужно отучить водолазов дышать, при этом не испытывая вполне понятной тревоги. Для этого дайверам потребуется проходить курс обучения, и только приобретя все необходимые навыки, из бассейна отправляться в «открытое плавание».

«Моё изобретение позволяет полностью избежать развития кессонной болезни, поскольку вдыхаемая жидкость не содержит азота, гелия и водорода, собственно и образующих пузырьки, закупоривающих сосуды и приводящих к серьезным поражениям внутренних органов», -торжествующе заявил Арнольд Лэнди, выступая на Международной конференции по прикладной бионике и биомеханике, состоявшейся в Италии.

Таким образом, изобретатель сделал ценный подарок не только одним лишь покорителям морских глубин. Предполагается, что жидкостное дыхание так же может быть успешно использовано при космических полётах и в качестве одного из средств комплексной терапии некоторых болезней. Порадоваться могли бы и защитники природы: к примеру, печально известный разрыв на нефтяной скважине в Мексиканском заливе произошёл на глубине полторы тысячи метров, что многовато даже для техники. А вот дайверы, дышащие как рыбы, смогли бы в данной ситуации быстро справиться с ремонтом.