Примеры расчета нагрузок трехфазных электрических сетей. Расчет нагрузки на фундамент. Определение нагрузки по току

Дизайн, декор

Определяется как максимальная мощность, иными словами максимальная из средних значений полной мощности (Sм) за получасовой промежуток времени. Расчетная или позволяет определить достаточность сечений питающих электролиний, учитывая нагрев и плотность тока, выбрать мощность трансформаторов, выявить потери мощности и перебои с напряжением в сети. Для вычисления расчетной нагрузки необходимо предварительно изучить основные понятия и коэффициенты.

Так, для расчета максимальной нагрузки необходимы средняя активная нагрузка (Рсм) и средняя реактивная нагрузка (Qсм) за загруженную максимально смену, а для определения потери электроэнергии за год - среднегодовые нагрузки активной (Рсг) и реактивной (Qсг) энергии. На практике, для расчета средней нагрузки активной и реактивной энергии соотносят величину потребления соответствующей энергии по показаниям счетчика за определенный промежуток времени (как правило, за время смены) к этому интервалу времени.

Существует понятие максимальной кратковременной или пиковой нагрузки (Iпик) - периодически возникающая нагрузка, необходимая для проверки и защиты сетей, определения колебаний напряжения.

  • Коэффициент использования установленной активной мощности (Ки). Он определяется как соотношение средней активной мощности одинаковых по режиму работы приемников (Рсм) к установленной мощности этих электроприемников (Ру). В свою очередь, установленная мощность электроприемника продолжительного режима работы определяется по паспорту, а приемника кратковременного режима - приводится к длительному режиму. Для группы приемников общая установленная активная мощность определяется суммированием активных мощностей всех приемников. Стоит отметить, что для группы разнородных приемников коэффициент Ки равен отношению суммарной средней мощности (Рсм) к суммарной установленной мощности (Ру).
  • Коэффициент максимума активной мощности (Км). Рассчитывается как отношение расчетной активной мощности (Рм) к среднему ее значению за смену или год (Рсм или Рсг соответственно). На рисунке раскрывается зависимость этого коэффициента от эффективного числа приемников при разных коэффициентах использования.

Значение К м при К и

  • Коэффициент нагрузки (Кн) показывает, что для суточных и годовых графиков нагрузка неравномерная. Его величина обратно пропорциональна величине предыдущего коэффициента.
  • Коэффициент спроса активной мощности (Кс) показывает, смогут ли работать одновременно все потребители, и рассчитывается как отношение расчетной нагрузки (Рм) к установленной мощности всех приемников (Ру). Ниже в таблице можно увидеть значения данного коэффициента.

Электроприемники

Металлорежущие станки мелкосерийного производства: мелкие токарные, строгальные, долбежные, фрезерные, сверлильные,
карусельные, точильные и т.п.

То же, но крупносерийного производства

Штамповочные прессы, автоматы, револьверные, обдирочные, зубофрезерные, а также крупные токарные, строгальные фрезерные,
карусельные и расточные станки

Приводы молотов, ковочных машин, волочильных станов, бегунов, очистных барабанов

Многоподшипниковые автоматы для изготовления деталей из прутков

Автоматические поточные линии обработки металлов

Переносной электроинструмент

Насосы, компрессоры, двигатель-генераторы

Эксгаустеры, вентиляторы

Элеваторы, транспортеры, шнеки, конвейеры несблокированные

То же, сблокированные

Краны, тельферы при ПВ = 25%

То же при ПВ = 40%

Сварочные трансформаторы дуговой сварки

Сварочные машины шовные

То же стыковые и точечные

Сварочные автоматы

Однопостовые сварочные двигатель-генераторы

Многопостовые сварочные двигатель-генераторы

Печи сопротивления с непрерывной автоматической загрузкой изделий, сушильные шкафы

То же, с периодической загрузкой

Мелкие нагревательные приборы

Индукционные печи низкой частоты

Двигатель-генераторы индукционных печей высокой частоты

Ламповые генераторы индукционных печей

  • Коэффициент включения (Кв). Для одного приемника он определяется отношением продолжительностью его работы за определенный интервал времени (Тв) к продолжительности этого интервала (Tц). Коэффициент для группы электроприемников определяется делением средней за исследуемый интервал времени включенной активной мощности по группе на установленную мощность группы.
  • Коэффициент загрузки приемника по активной мощности (Кз). По аналогии с предыдущим коэффициентом, на него также влияет продолжительность работы приемника. Рассчитывается он путем деления средней активной мощности за период работы в определенный промежуток времени (Рс) на его номинальную мощность (Рн). Коэффициент по группе определяется соотношением вышеупомянутых коэффициентов Ки и Кв. При невозможности расчета коэффициента загрузки принимаются их нормативные значения: 0,9 - приемники с продолжительным режимом работы, 0,75 - с повторно-кратковременным режимом.
  • Коэффициент сменности по использованию энергии (α). Этот коэффициент, учитывая сезонность и прерывность загрузки, определяет годовой расход электроэнергии. В зависимости от вида деятельности предприятия примерные значения коэффициента могут варьировать от 0,65, что характерно для вспомогательных цехов в заводах черной металлургии до 0,95 - для алюминиевых заводов.
определяется при наличии данных по следующим величинам:

  • Сколько часов за год работает приемник с максимальной нагрузкой и потреблением электроэнергии , соответствующим графику нагрузки. Такая величина называется годовым числом часов использования максимума активной мощности (Тм) и зависит от количества смен и вида деятельности предприятия. Так, при работе в одну смену Тм может составлять от 1800 до 2500 часов, если работа двухсменная - до 4500 часов, при трехсменной работе - до 7000 часов;
  • Число часов работы предприятия за год (Тг) даст представление о годовом режиме использования электроэнергии. Зависит от количества смен, а также их длительности;
  • Значение эффективного числа приемников дает возможность заменить группу разных по режиму работы приемников группой однородных. На рисунке отражены кривые, определяющие эффективное число электроприемников.

Так как же определить расчетную нагрузку? Для расчета нагрузок наиболее точным является метод упорядоченных диаграмм. Имея данные о мощности каждого приемника, количестве и техназначении всех приемников, а также с помощью вышеизложенных коэффициентов и величин, рассмотрим порядок расчета по узлам питания:

  • Приемники делим на группы по их технологическому назначению;
  • По каждой группе вычисляем среднюю активную и реактивную мощности (Рсм и Qсм);
  • Определяем число приемников (n), суммарную установленную мощность (Ру), а также суммарные средние реактивной и активной мощностей;
  • Рассчитываем коэффициент использования по группе (Ки);
  • Определяем эффективное число электроприемников;
  • Используя вышеприведенную таблицу и рисунок, находим максимальный коэффициент;
  • Вычисляем расчетную активную мощность (Рм), а расчетная реактивная мощность (Qм) равна средней реактивной мощности (Qсм);
  • Находим расчетную полную мощность (Sм) и ток (Iм).

От правильного выбора сечения электропроводки зависит комфорт и безопасность в доме. При перегрузке проводник перегревается, и изоляция может оплавиться, что приведет к пожару или короткому замыканию. Но сечение больше необходимого брать невыгодно, поскольку возрастает цена кабеля.

Вообще, его рассчитывают в зависимости от количества потребителей, для чего сначала определяют общую мощность, используемую квартирой, а затем умножают результат на 0,75. В ПУЭ применяется таблица нагрузок по сечению кабеля. По ней можно легко определить диаметр жил, который зависит от материала и проходящего тока. Как правило, применяются медные проводники.

Сечение жилы кабеля должно точно соответствовать расчетному - в сторону увеличения стандартного размерного ряда. Наиболее опасно, когда оно занижено. Тогда проводник постоянно перегревается, и изоляция быстро выходит из строя. А если установить соответствующий то будет происходить его частое срабатывание.

При завышении сечения провода, он обойдется дороже. Хотя определенный запас необходим, поскольку в дальнейшем, как правило, приходится подключать новое оборудование. Целесообразно применять коэффициент запаса порядка 1,5.

Расчет суммарной мощности

Общая потребляемая квартирой мощность приходится на главный ввод, который входит в распределительный щит, а после него разветвляется на линии:

  • освещение;
  • группы розеток;
  • отдельные мощные электроприборы.

Поэтому самое большое сечение силового кабеля - на входе. На отводящих линиях оно уменьшается, в зависимости от нагрузки. В первую очередь, определяется суммарная мощность всех нагрузок. Это несложно, так как на корпусах всех бытовых приборов и в паспортах к ним она обозначается.

Все мощности складываются. Аналогично производятся расчеты и по каждому контуру. Специалисты предлагают умножать сумму на 0,75. Это объясняется тем, что одновременно все приборы в сеть не включаются. Другие предлагают выбирать сечение большего размера. За счет этого создается резерв на последующий ввод в действие дополнительных электрических приборов, которые могут быть приобретены в будущем. Нужно отметить, что этот вариант расчета кабеля более надежен.

Как определить сечение провода?

Во всех расчетах фигурирует сечение кабеля. По диаметру его определить проще, если применять формулы:

  • S = π D²/4 ;
  • D = √(4× S /π).

Где π = 3,14.

S = N×D²/1,27.

Многожильные провода применяются там, где требуется гибкость. Более дешевые цельные проводники используются при стационарном монтаже.

Как выбрать кабель по мощности?

Для того чтобы подобрать проводку, применяется таблица нагрузок по сечению кабеля:

  • Если линия открытого типа находится под напряжением 220 В, а суммарная мощность составляет 4 кВт, берется медный проводник сечением 1,5 мм². Данный размер обычно применяется для проводки освещения.
  • При мощности 6 кВт требуются жилы большего сечения - 2,5 мм². Провод применяется для розеток, к которым подключаются бытовые приборы.
  • Мощность 10 кВт требует использования проводки на 6 мм². Обычно она предназначена для кухни, где подключается электрическая плита. Подвод к подобной нагрузке производится по отдельной линии.

Какие кабели лучше?

Электрикам хорошо известен кабель немецкой марки NUM для офисных и жилых помещений. В России выпускают марки кабелей, которые по характеристикам ниже, хотя могут иметь то же название. Их можно отличить по подтекам компаунда в пространстве между жилами или по его отсутствию.

Провод выпускается монолитным и многопроволочным. Каждая жила, а также вся скрутка снаружи изолируется ПВХ, причем наполнитель между ними выполнен негорючим:

  • Так, кабель NUM применяется внутри помещений, поскольку изоляция на улице разрушается от солнечных лучей.
  • А в качестве внутренней и широко используется кабель марки ВВГ. Он дешев и достаточно надежен. Для прокладки в грунте его не рекомендуется применять.
  • Провод марки ВВГ изготавливается плоским и круглым. Между жилами наполнитель не применяется.
  • делают с внешней оболочкой, не поддерживающей горения. Жилы изготавливаются круглые до сечения 16 мм², а свыше - секторные.
  • Марки кабелей ПВС и ШВВП делаются многопроволочными и используются преимущественно для подключения бытовых приборов. Его часто применяют в качестве домашней электропроводки. На улице многопроволочные жилы использовать не рекомендуется по причине коррозии. Кроме того, изоляция при изгибе трескается при низкой температуре.
  • На улице под землей прокладывают бронированные и устойчивые к влаге кабели АВБШв и ВБШв. Броня изготавливается из двух стальных лент, что повышает надежность кабеля и делает его устойчивым к механическим воздействиям.

Определение нагрузки по току

Более точный результат дает расчет сечения кабеля по мощности и току, где геометрические параметры связаны с электрическими.

Для домашней проводки должна учитывается не только активная нагрузка, но и реактивная. Сила тока определяется по формуле:

I = P/(U∙cosφ).

Реактивную нагрузку создают люминесцентные лампы и двигатели электроприборов (холодильника, пылесоса, электроинструмента и др.).

Пример по току

Давайте выясним, как быть, если необходимо определить сечение медного кабеля для подключения бытовой техники суммарной мощностью 25 кВт и трехфазных станков на 10 кВт. Такое подключение производится пятижильным кабелем, проложенным в грунте. Питание дома производится от

С учетом реактивной составляющей, мощность бытовой техники и оборудования составит:

  • P быт. = 25/0,7 = 35,7 кВт;
  • P обор. = 10/0,7 = 14,3 кВт.

Определяются токи на вводе:

  • I быт. = 35,7×1000/220 = 162 А;
  • I обор. = 14,3×1000/380 = 38 А.

Если распределить однофазные нагрузки равномерно по трем фазам, на одну будет приходиться ток:

I ф = 162/3 = 54 А.

I ф = 54 + 38 = 92 А.

Вся техника одновременно не будет работать. С учетом запаса на каждую фазу приходится ток:

I ф = 92×0,75×1,5 = 103,5 А.

В пятижильном кабеле учитываются только фазные жилы. Для кабеля, проложенного в грунте, можно определить для тока 103,5 А сечение жил 16 мм² (таблица нагрузок по сечению кабеля).

Уточненный расчет по силе тока позволяет сэкономить средства, поскольку требуется меньшее сечение. При более грубом расчете кабеля по мощности, сечение жилы составит 25 мм², что обойдется дороже.

Падение напряжения на кабеле

Проводники обладают сопротивлением, которое необходимо учитывать. Особенно это важно для большой длины кабеля или при его малом сечении. Установлены нормы ПЭУ, по которым падение напряжения на кабеле не должно превышать 5 %. Расчет делается следующим образом.

  1. Определяется сопротивление проводника: R = 2×(ρ×L)/S.
  2. Находится падение напряжения: U пад. = I×R. По отношению к линейному в процентах оно составит: U % = (U пад. /U лин.)×100.

В формулах приняты обозначения:

Коэффициент 2 показывает, что ток течет по двум жилам.

Пример расчета кабеля по падению напряжения

  • Сопротивление провода составляет: R = 2(0,0175×20)/2,5 = 0,28 Ом .
  • Сила тока в проводнике: I = 7000/220 =31,8 А .
  • Падение напряжения на переноске: U пад. = 31,8×0,28 = 8,9 В .
  • Процент падения напряжения: U % = (8,9/220)×100 = 4,1 %.

Переноска подходит для сварочного аппарата по требованиям правил эксплуатации электроустановок, поскольку процент падения на ней напряжения находится в пределах нормы. Однако его величина на питающем проводе остается большой, что может негативно повлиять на процесс сварки. Здесь необходима проверка нижнего допустимого предела напряжения питания для сварочного аппарата.

Заключение

Чтобы надежно защитить электропроводку от перегрева при длительном превышении номинального тока, сечения кабелей рассчитывают по длительно допустимым токам. Расчет упрощается, если применяется таблица нагрузок по сечению кабеля. Более точный результат получается, если вычисление производится по максимальной токовой нагрузке. А для стабильной и долговременной работы в цепи электропроводки устанавливают автоматический выключатель.

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещенияжелезобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

Справочная таблица — Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м 2 .
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м 2 .
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м 2 .
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м 2 .

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Таблица — расчет снеговой нагрузки на фундамент

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

  1. Площадь перекрытий равна площади дома – 80 м 2 . В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м 2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м 2 .

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

Таблица — Удельный вес стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м 2 .
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м 3 .
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м 2 .
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

Таблица — удельная плотность материало для грунта

  1. Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .

Расчет общей нагрузки на 1 м 2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R 0 определяют по таблицам СНиП 2.02.01-83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м 2 =17 т/м 2 .
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01-83. Для влажных суглинков с коэффициентом пористости 0,5 R 0 составляет 2,5 кг/см 2 , или 25 т/м 2 .

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Для долговечной и надежной работы электропроводки необходимо правильно выбрать сечение кабеля. Для этого нужно рассчитать нагрузку в электросети. При проведении расчетов нужно помнить, что расчет нагрузки одного электроприбора и группы электроприборов несколько разнятся.

Расчет токовой нагрузки для одиночного потребителя

Выбор автомата защиты и расчет нагрузки для одиночного потребителя в квартирной сети 220 В довольно прост. Для этого вспоминаем главный закон электротехники – закон Ома. После чего установив мощность электроприбора (указывается в паспорте на электроприбор) и задавшись напряжением (для бытовых однофазных сетей 220 В) рассчитываем ток, потребляемый электроприбором.

Например, бытовой электроприбор имеет напряжение питания 220 В и паспортную мощность 3 кВт. Применяем закон Ома и получаем I ном = Р ном /U ном = 3000 Вт/220 В = 13,6 А. Соответственно для защиты данного потребителя электрической энергии необходимо установить автоматический выключатель с номинальным током в 14 А. Поскольку таких не существует, то выбирается ближайший больший, то есть с номинальным током в 16 А.

Расчет токовой нагрузки для групп потребителей

Так как питание потребителей электроэнергии может осуществляться не только индивидуально, но и по группам, становится актуальным вопрос расчета нагрузки группы потребителей, так как они будут подключатся к одному автоматическому выключателю.

Для расчета группы потребителей вводят коэффициент спроса К с. Он определяет вероятность одновременного подключения всех потребителей группы в течении длительного времени.

Значение К с = 1 соответствует одновременному подключению всех электроприборов группы. Естественно, что включение одновременно всех потребителей электроэнергии в квартире вещь крайне редкая, я бы сказал невероятная. Существуют целые методики расчета коэффициентов спроса для предприятий, домов, подъездов, цехов и так далее. Коэффициент спроса квартиры будет различаться для разных комнат, потребителей, а также во многом будет зависеть от стиля жизни жильцов.

Поэтому расчет для группы потребителей будет выглядеть несколько сложнее, так как необходимо учитывать этот коэффициент.

Ниже в таблице приведены коэффициенты спроса для электроприборов небольшой квартиры:

Коэффициент спроса будет равен отношению приведённой мощности к полной К с квартиры = 2843/8770 = 0,32.

Рассчитываем ток нагрузки I ном = 2843 Вт/220 В = 12,92 А. Выбираем автомат на 16А.

По приведенным выше формулам мы рассчитали рабочий ток сети. Теперь необходимо выбрать сечение кабеля для каждого потребителя или групп потребителей.

ПУЭ (правила устройств электроустановок) регламентирует сечение кабеля для различных токов, напряжений, мощностей. Ниже приведена таблица из которой по расчетной мощности сети и току выбирается сечение кабеля для электроустановок с напряжением 220 В и 380 В:

В таблице приведены только сечения медных проводов. Это связано с тем, что алюминиевые электропроводки в современных жилых домах не прокладываются.

Также ниже приведена таблица с номенклатурой мощностей бытовых электроприборов для расчета в сетях жилых помещений (из нормативов для определения расчетных нагрузок зданий, квартир, частных домов, микрорайонов).

Типичный вариант выбора сечения кабеля

В соответствии с сечением кабеля применяют автоматические выключатели. Чаще всего используют классический вариант сечения проводов:

  • Для цепей освещения сечения 1,5 мм 2 ;
  • Для цепей розеток сечения 2,5 мм 2 ;
  • Для электроплит, кондиционеров, водонагревателей – 4 мм 2 ;

Для ввода в квартиру питания используют 10 мм 2 кабель, хотя в большинстве случаев хватает и 6 мм 2 . Но сечение 10 мм 2 выбирается с запасом, так сказать с расчетом на большее количество электроприборов. Также на входе устанавливается общее УЗО с током отключения 300 мА – его назначение пожарное, так как ток отключения слишком великим для защиты человека или животного.

Для защиты людей и животных применяют УЗО с током отключения 10 мА или 30 мА непосредственно в потенциально небезопасных помещениях, таких как кухня, ванна, иногда комнатные группы розеток. Осветительная сеть, как правило, УЗО не снабжается.

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) - 60 А;
  • электроплита (10 кВт) - 50 А;
  • варочная панель (8 кВт) - 40 А;
  • электроводонагреватель проточный (6 кВт) - 30 А;
  • посудомоечная машина (2,5 кВт) - 12,5 А;
  • стиральная машина (2,5 кВт) - 12,5 А;
  • джакузи (2,5 кВт) - 12,5 А;
  • кондиционер (2,4 кВт) - 12 А;
  • СВЧ-печь (2,2 кВт) - 11 А;
  • электроводонагреватель накопительный (2 кВт) - 10 А;
  • электрочайник (1,8 кВт) - 9 А;
  • утюг (1,6 кВт) - 8 А;
  • солярий (1,5 кВт) - 7,5 А;
  • пылесос (1,4 кВт) - 7 А;
  • мясорубка (1,1 кВт) - 5,5 А;
  • тостер (1 кВт) - 5 А;
  • кофеварка (1 кВт) - 5 А;
  • фен (1 кВт) - 5 А;
  • настольный компьютер (0,5 кВт) - 2,5 А;
  • холодильник (0,4 кВт) - 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.