Kiek μs yra erdvėje? Kokiame aukštyje skraido lėktuvai, palydovai ir erdvėlaiviai?

Dažymas

Tarptautinė kosminė stotis, ISS (angl. International Space Station, ISS) yra pilotuojamas daugiafunkcis kosminių tyrimų kompleksas.

Kuriant TKS dalyvauja: Rusija (Federalinė kosmoso agentūra, Roscosmos); JAV (JAV nacionalinė aerokosminė agentūra, NASA); Japonija (Japan Aerospace Exploration Agency, JAXA), 18 Europos šalių (Europos kosmoso agentūra, ESA); Kanada (Kanados kosmoso agentūra, CSA), Brazilija (Brazilijos kosmoso agentūra, AEB).

Statybos prasidėjo 1998 m.

Pirmasis modulis yra „Zarya“.

Statybos pabaiga (manoma) - 2012 m.

ISS užbaigimo data yra (tikėtina) 2020 m.

Orbitos aukštis nuo Žemės yra 350–460 kilometrų.

Orbitos polinkis yra 51,6 laipsnio.

TKS daro 16 apsisukimų per dieną.

Stoties svoris (statybos užbaigimo metu) yra 400 tonų (2009 m. - 300 tonų).

Vidinė erdvė (statybos užbaigimo metu) - 1,2 tūkst. kub.

Ilgis (išilgai pagrindinės ašies, išilgai kurios išdėstyti pagrindiniai moduliai) - 44,5 metro.

Aukštis – beveik 27,5 metro.

Plotis (pagal saulės baterijas) – daugiau nei 73 metrai.

TKS aplankė pirmieji kosminiai turistai (atsiuntė Roscosmos kartu su Space Adventures kompanija).

2007 metais buvo surengtas pirmojo Malaizijos astronauto šeicho Muszafaro Šukoro skrydis.

ISS statybos kaina iki 2009 m. siekė 100 mlrd.

Skrydžio valdymas:

Rusijos segmentas vykdomas iš TsUP-M (TsUP-Maskva, Korolevas, Rusija);

Amerikietiškas segmentas – iš TsUP-X (TsUP-Houston, Hiustonas, JAV).

Į ISS įtrauktų laboratorinių modulių veikimą kontroliuoja:

Europos „Kolumbas“ – Europos kosmoso agentūros valdymo centras (Oberpfaffenhofen, Vokietija);

Japonijos „Kibo“ – Japonijos aviacijos ir kosmoso tyrimų agentūros misijos valdymo centras (Tsukuba miestas, Japonija).

Europos automatinio krovininio laivo ATV „Jules Verne“ („Jules Verne“), skirto aprūpinti TKS, skrydį kartu su MCC-M ir MCC-X kontroliavo Europos kosmoso agentūros centras (Tulūza, Prancūzija). ).

Techninį Rusijos TKS segmento darbų koordinavimą ir jo integravimą su Amerikos segmentu vykdo Vyriausiųjų projektuotojų taryba, vadovaujama RSC Energia prezidento, generalinio dizainerio. S.P. Korolevas, RAS akademikas Yu.P. Semenovas.
Rusijos TKS segmento elementų paruošimą ir paleidimą valdo Tarpvalstybinė skrydžių palaikymo ir orbitinių pilotuojamų kompleksų eksploatavimo komisija.


Pagal galiojančią tarptautinę sutartį kiekvienas projekto dalyvis turi savo segmentus TKS.

RSC Energia yra pirmaujanti kuriant Rusijos segmentą ir integruojant jį su Amerikos segmentu. S.P. „Queen“, o amerikietiškam segmentui – „Boeing“ kompanija.

Rusijos segmento elementų gamyboje dalyvauja apie 200 organizacijų, įskaitant: Rusijos mokslų akademiją; vardo eksperimentinė mechaninės inžinerijos gamykla RSC Energia. S.P. karalienė; raketų ir kosmoso gamykla GKNPT im. M.V. Chruničeva; BNP RKT „TSSKB-Pažanga“; Bendrosios mechanikos inžinerijos projektavimo biuras; Kosmoso instrumentų RNII; Tiksliųjų instrumentų mokslo institutas; RGNII TsPK im. Yu.A. Gagarinas.

Rusijos segmentas: aptarnavimo modulis „Zvezda“; funkcinis krovinių blokas „Zarya“; prijungimo skyrius "Pirce".

Amerikietiškas segmentas: mazgo modulis „Unity“; šliuzo modulis „Quest“; Laboratorinis modulis „Likimas“

Kanada sukūrė TKS manipuliatorių LAB modulyje – 17,6 metro robotinę ranką „Canadarm“.

Italija tiekia ISS vadinamuosius daugiafunkcius logistikos modulius (MPLM). Iki 2009 m. buvo pagaminti trys iš jų: „Leonardo“, „Raffaello“, „Donatello“ („Leonardo“, „Raffaello“, „Donatello“). Tai dideli cilindrai (6,4 x 4,6 metro) su prijungimo bloku. Tuščias logistikos modulis sveria 4,5 tonos, į jį galima pakrauti iki 10 tonų eksperimentinės įrangos ir eksploatacinių medžiagų.

Žmonių pristatymą į stotį užtikrina rusiški „Sojuz“ ir amerikietiški maršrutiniai autobusai (daugkartiniai maršrutiniai autobusai); kroviniai pristatomi Rusijos Progress lėktuvais ir amerikietiškais šaudyklėmis.

Japonija sukūrė savo pirmąją mokslinę orbitinę laboratoriją, kuri tapo didžiausiu TKS moduliu – „Kibo“ (iš japonų kalbos išvertus „Viltis“, tarptautinis santrumpa JEM, Japanese Experiment Module).

Europos kosmoso agentūros prašymu Europos aviacijos ir kosmoso firmų konsorciumas pastatė Kolumbo tyrimų modulį. Jis skirtas atlikti fizinius, medžiagų mokslo, medicininius-biologinius ir kitus eksperimentus, kai nėra gravitacijos. ESA užsakymu buvo pagamintas „Harmony“ modulis, kuris jungia Kibo ir Columbus modulius, taip pat užtikrina jų maitinimą ir apsikeitimą duomenimis.

TKS taip pat buvo pagaminti papildomi moduliai ir įrenginiai: šaknies segmento modulis ir girodinai mazge-1 (Node 1); energijos modulis (SB AS sekcija) ant Z1; mobiliųjų paslaugų sistema; įrangai ir įgulai perkelti įtaisas; įrangos ir įgulos judėjimo sistemos įtaisas "B"; ūkiai S0, S1, P1, P3/P4, P5, S3/S4, S5, S6.

Visi ISS laboratoriniai moduliai turi standartizuotus stelažus blokams su eksperimentine įranga montuoti. Laikui bėgant, TKS įsigis naujų blokų ir modulių: Rusijos segmentas turėtų būti papildytas moksline ir energetine platforma, daugiafunkciu tyrimų moduliu Enterprise ir antruoju funkciniu krovinių bloku (FGB-2). „Cupola“ mazgas, pagamintas Italijoje, bus montuojamas ant Node 3 modulio. Tai kupolas su daugybe labai didelių langų, pro kuriuos stoties gyventojai tarsi teatre galės stebėti atplaukiančius laivus ir stebėti savo kolegų darbą kosmose.

TKS sukūrimo istorija

Dirba tarptautinėse srityse kosminė stotis prasidėjo 1993 m.

Rusija pasiūlė JAV suvienyti jėgas įgyvendinant pilotuojamas programas. Iki to laiko Rusija turėjo 25 metų orbitinių stočių „Salyut“ ir „Mir“ eksploatavimo istoriją, taip pat turėjo neįkainojamos patirties vykdant ilgalaikius skrydžius, atliekant tyrimus ir išvystytą kosmoso infrastruktūrą. Tačiau 1991 m. šalis atsidūrė sunkioje ekonominėje situacijoje. Kartu su finansiniais sunkumais susidūrė ir Laisvės orbitinės stoties (JAV) kūrėjai.

1993 m. kovo 15 d generalinis direktorius Roscosmos agentūra A Yu.N. Koptevas ir generalinis NPO Energia dizaineris Yu.P. Semenovas kreipėsi į NASA vadovą Goldiną su pasiūlymu sukurti tarptautinę kosminę stotį.

1993 m. rugsėjo 2 d. Rusijos Federacijos vyriausybės pirmininkas Viktoras Černomyrdinas ir JAV viceprezidentas Alas Gore'as pasirašė „Bendrą pareiškimą dėl bendradarbiavimo kosmose“, kuriame buvo numatyta sukurti bendrą stotį. 1993 m. lapkričio 1 d. buvo pasirašytas „ Detalusis planas darbas Tarptautinėje kosminėje stotyje“, o 1994 m. birželį – NASA ir „Roscosmos“ agentūrų sutartis „Dėl tiekimo ir paslaugų Mir stočiai ir Tarptautinei kosminei stočiai“.

Pradinis statybos etapas apima funkcionaliai užbaigtos stoties struktūros sukūrimą iš riboto skaičiaus modulių. Pirmasis į orbitą paleistas nešančiosios raketos „Proton-K“ buvo funkcinis krovininis blokas „Zarya“ (1998 m.), pagamintas Rusijoje. Antrasis laivas, pristatęs šaudyklą, buvo amerikietiškas doko modulis Node-1 „Unity“ su funkciniu krovinių bloku (1998 m. gruodžio mėn.). Trečiasis buvo paleistas rusiškas aptarnavimo modulis „Zvezda“ (2000), kuris užtikrina stoties valdymą, įgulos gyvybės palaikymą, stoties orientaciją ir orbitos korekciją. Ketvirtasis – amerikietiškas laboratorijos modulis „Destiny“ (2001).

Pirmoji pagrindinė TKS įgula, kuri į stotį atvyko 2000 m. lapkričio 2 d. erdvėlaiviu Sojuz TM-31: Williamas Shepherdas (JAV), TKS vadas, erdvėlaivio Sojuz-TM-31 skrydžio inžinierius 2; Sergejus Krikalevas (Rusija), erdvėlaivio Sojuz-TM-31 skrydžio inžinierius; Jurijus Gidzenko (Rusija), TKS pilotas, erdvėlaivio Sojuz TM-31 vadas.

ISS-1 įgulos skrydžio trukmė buvo apie keturis mėnesius. Jo grįžimą į Žemę atliko Amerikos kosminis šaulys, kuris į TKS nugabeno antrosios pagrindinės ekspedicijos įgulą. Erdvėlaivis Sojuz TM-31 išliko TKS dalimi šešis mėnesius ir tarnavo kaip gelbėjimo laivas laive dirbančiai įgulai.

2001 metais Z1 šakniniame segmente buvo sumontuotas P6 energijos modulis, į orbitą pristatytas Destiny laboratorinis modulis, Quest oro užrakto kamera, Pirs doko skyrius, dvi teleskopinės krovinių strėlės ir nuotolinis manipuliatorius. 2002 m. stotis buvo papildyta trimis santvarų konstrukcijomis (S0, S1, P6), iš kurių dviejose yra įrengti transportavimo įrenginiai nuotolinio manipuliatoriaus ir astronautų judėjimui dirbant kosmose.

TKS statybos buvo sustabdytos dėl amerikiečių erdvėlaivio „Columbia“ katastrofos 2003 metų vasario 1 dieną, o statybos darbai buvo atnaujinti 2006 metais.

2001 metais ir du kartus 2007 metais kompiuterių gedimai užfiksuoti Rusijos ir Amerikos segmentuose. 2006 metais Rusijos stoties segmente atsirado dūmų. 2007 metų rudenį stoties įgula dirigavo renovacijos darbai saulės baterija.

Į stotį buvo pristatytos naujos saulės baterijų sekcijos. 2007 m. pabaigoje TKS buvo papildyta dviem slėginiais moduliais. Spalio mėnesį „Discovery“ šaudyklė STS-120 į orbitą iškėlė mazgo-2 „Harmony“ jungiamąjį modulį, kuris tapo pagrindine šaudyklų krantine.

Europos laboratorinis modulis Columbus buvo paleistas į orbitą Atlantidos laive STS-122 ir šio laivo manipuliatoriaus pagalba patalpintas į įprastą vietą (2008 m. vasario mėn.). Tada į TKS buvo įvestas japoniškas „Kibo“ modulis (2008 m. birželis), pirmasis jo elementas į TKS buvo pristatytas „Endeavour“ šaudyklės STS-123 (2008 m. kovo mėn.).

ISS perspektyvos

Kai kurių pesimistiškai nusiteikusių ekspertų nuomone, TKS yra laiko ir pinigų švaistymas. Jie mano, kad stotis dar nepastatyta, bet jau pasenusi.

Tačiau įgyvendindama ilgalaikę kosminių skrydžių į Mėnulį ar Marsą programą, žmonija neapsieina be TKS.

Nuo 2009 metų nuolatinė TKS įgula bus padidinta iki 9 žmonių, o eksperimentų skaičius didės. Rusija artimiausiais metais planuoja atlikti 331 eksperimentą TKS. Europos kosmoso agentūra (EKA) su partneriais jau pastatė naują transporto laivą – automatinį pervežimo automobilį (ATV), kurį į bazinę orbitą (300 kilometrų aukštyje) paleis keturračio raketa Ariane-5 ES, iš kur keturratis, naudodamas savo variklius, išskris į TKS orbitą (400 kilometrų virš Žemės). Šio 10,3 metro ilgio ir 4,5 metro skersmens automatinio laivo naudingoji apkrova siekia 7,5 tonos. Tai apims eksperimentinę įrangą, maistą, orą ir vandenį TKS įgulai. Pirmasis keturračių serialas (2008 m. rugsėjis) buvo pavadintas „Jules Verne“. Prisijungęs prie TKS automatiniu režimu, keturratis savo sudėtyje gali dirbti šešis mėnesius, po to laivas pakraunamas šiukšlėmis ir kontroliuojamai nuskendo Ramiajame vandenyne. Keturračius planuojama paleisti kartą per metus, o iš viso jų bus pagaminta ne mažiau kaip 7. Japoniškas H-II automatinis sunkvežimis „Transfer Vehicle“ (HTV), į orbitą iškeltas Japonijos nešančiosios raketos H-IIB, kuri šiuo metu vis dar kuriama, prisijungs prie TKS programos . Bendras HTV svoris bus 16,5 tonos, iš kurių 6 tonos yra stoties naudingoji apkrova. Jis galės likti prijungtas prie TKS iki vieno mėnesio.

Pasenę maršrutiniai autobusai bus pašalinti iš skrydžių 2010 m., o naujoji karta pasirodys ne anksčiau kaip 2014–2015 m.
Iki 2010 metų bus modernizuoti Rusijos pilotuojami erdvėlaiviai „Sojuz“: pirmiausia bus pakeistos elektroninės valdymo ir ryšių sistemos, kurios padidins erdvėlaivio naudingąją apkrovą mažinant elektroninės įrangos svorį. Atnaujintas „Sojuz“ stotyje galės išbūti beveik metus. Rusijos pusė statys erdvėlaivį „Clipper“ (pagal planą pirmasis bandomasis pilotuojamas skrydis į orbitą – 2014 m., paleidimas – 2016 m.). Šis šešių vietų daugkartinio naudojimo sparnuotas šaudyklas yra dviejų versijų: su agregato skyriumi (ABO) arba variklio skyriumi (DO). Į kosmosą į palyginti žemą orbitą pakilusį „Clipper“ seks tarporbitinis vilkikas „Parom“. "Keltas" - nauja plėtra, skirtas laikui bėgant pakeisti krovinį „Progress“. Šis vilkikas turi iš žemos etaloninės orbitos į TKS orbitą traukti vadinamuosius „konteinerius“, krovinines „statines“ su minimalia įranga (4–13 tonų krovinio), paleidžiamas į kosmosą naudojant „Sojuz“ arba „Proton“. „Parom“ turi du prijungimo prievadus: vieną konteineriui, antrąjį – švartavimuisi prie ISS. Konteineriui iškėlus į orbitą, keltas, naudodamas savo varomąją sistemą, nusileidžia prie jo, prisišvartuoja prie jo ir pakelia į TKS. O iškrovęs konteinerį Parom nuleidžia jį į žemesnę orbitą, kur atsikabina ir savarankiškai sulėtėja, kad sudegtų atmosferoje. Vilkikas turės palaukti, kol bus pristatytas naujas konteineris į TKS.

Oficiali RSC Energia svetainė: http://www.energia.ru/rus/iss/iss.html

Oficiali „Boeing Corporation“ svetainė: http://www.boeing.com

Oficiali skrydžių valdymo centro svetainė: http://www.mcc.rsa.ru

Oficiali JAV nacionalinės aviacijos agentūros (NASA) svetainė: http://www.nasa.gov

Oficiali Europos kosmoso agentūros (ESA) svetainė: http://www.esa.int/esaCP/index.html

Oficiali Japonijos aviacijos ir kosmoso tyrimų agentūros (JAXA) svetainė: http://www.jaxa.jp/index_e.html

Oficiali Kanados kosmoso agentūros (CSA) svetainė: http://www.space.gc.ca/index.html

Oficiali Brazilijos kosmoso agentūros (AEB) svetainė:

Tarptautinė kosminė stotis (TKS) yra didelio masto ir, ko gero, sudėtingiausias techninis projektas savo organizacijoje per visą žmonijos istoriją. Kasdien šimtai specialistų visame pasaulyje dirba siekdami užtikrinti, kad TKS galėtų visapusiškai atlikti savo pagrindinę funkciją – būti moksline platforma tiriant beribę kosmosą ir, žinoma, mūsų planetą.

Kai žiūrite naujienas apie TKS, kyla daug klausimų, kaip kosminė stotis gali veikti ekstremaliomis sąlygomis kosmosą, kaip ji skrenda orbita ir nekrenta, kaip žmonės gali joje gyventi nenukentėdami nuo aukštos temperatūros ir saulės spinduliuotės.

Išstudijavus šią temą ir kartu surinkus visą informaciją, turiu pripažinti, kad vietoj atsakymų sulaukiau dar daugiau klausimų.

Kokiame aukštyje skraido TKS?

TKS skrenda termosferoje maždaug 400 km aukštyje nuo Žemės (informacijai – atstumas nuo Žemės iki Mėnulio yra maždaug 370 tūkst. km). Pati termosfera yra atmosferos sluoksnis, kuris iš tikrųjų dar nėra visiškai erdvė. Šis sluoksnis tęsiasi nuo Žemės iki 80 km iki 800 km atstumo.

Termosferos ypatumas yra tas, kad temperatūra didėja didėjant aukščiui ir gali labai svyruoti. Virš 500 km didėja saulės spinduliuotės lygis, kuris gali lengvai sugadinti įrangą ir neigiamai paveikti astronautų sveikatą. Todėl TKS nepakyla aukščiau 400 km.

Štai kaip TKS atrodo iš Žemės

Kokia temperatūra yra už TKS?

Informacijos šia tema labai mažai. Skirtingi šaltiniai sako skirtingai. Sakoma, kad 150 km aukštyje temperatūra gali siekti 220–240°, o 200 km – daugiau nei 500°. Virš to temperatūra toliau kyla ir 500-600 km lygyje tariamai jau viršija 1500°.

Pasak pačių kosmonautų, 400 km aukštyje, kuriame skrenda TKS, temperatūra nuolat kinta priklausomai nuo šviesos ir šešėlių sąlygų. Kai TKS yra šešėlyje, lauke temperatūra nukrenta iki -150°, o esant tiesioginiams saulės spinduliams, temperatūra pakyla iki +150°. Ir tai jau net ne garinė pirtyje! Kaip astronautai net gali būti kosmose esant tokiai temperatūrai? Ar tikrai juos gelbsti super termo kostiumas?

Kosmonauto darbas kosmose +150°

Kokia temperatūra TKS viduje?

Priešingai nei temperatūra lauke, TKS viduje galima palaikyti stabilią žmogaus gyvybei tinkamą temperatūrą – maždaug +23°. Be to, visiškai neaišku, kaip tai daroma. Jei lauke, pavyzdžiui, +150°, kaip galima atvėsinti temperatūrą stoties viduje ar atvirkščiai ir nuolat palaikyti normalią?

Kaip radiacija veikia astronautus TKS?

400 km aukštyje foninė spinduliuotėšimtus kartų didesnis nei Žemėje. Todėl TKS astronautai, atsidūrę saulėtoje pusėje, gauna kelis kartus didesnį radiacijos lygį nei dozė, gaunama, pavyzdžiui, atlikus krūtinės ląstos rentgenogramą. O galingų saulės blyksnių metu stoties darbuotojai gali išgerti 50 kartų didesnę dozę nei įprasta. Kaip jiems pavyksta ilgai dirbti tokiomis sąlygomis, taip pat lieka paslaptimi.

Kaip kosminės dulkės ir šiukšlės veikia TKS?

NASA duomenimis, žemoje Žemės orbitoje yra apie 500 tūkstančių didelių šiukšlių (panaudotų etapų dalys ar kitos erdvėlaivių ir raketų dalys) ir iki šiol nežinoma, kiek panašių smulkių šiukšlių. Visas šis „gėris“ sukasi aplink Žemę 28 tūkst. km/h greičiu ir kažkodėl nesitraukia prie Žemės.

Be to, yra ir kosminių dulkių – tai visokie meteoritų fragmentai ar mikrometeoritai, kuriuos nuolat traukia planeta. Be to, net jei dulkių dėmė sveria tik 1 gramą, ji virsta šarvus pradurtu sviediniu, galinčiu padaryti skylę stotyje.

Jie sako, kad jei tokie objektai priartėja prie TKS, astronautai keičia stoties kursą. Tačiau smulkių šiukšlių ar dulkių atsekti nepavyksta, todėl pasirodo, kad TKS nuolatos gresia didelis pavojus. Kaip su tuo susidoroja astronautai, vėlgi neaišku. Pasirodo, kiekvieną dieną jie labai rizikuoja savo gyvybe.

Erdvinių šiukšlių skylė erdvėlaivyje Endeavour STS-118 atrodo kaip kulkos skylė

Kodėl TKS nenukrenta?

Įvairūs šaltiniai rašo, kad TKS nenukrenta dėl silpnos Žemės gravitacijos ir stoties pabėgimo greičio. Tai yra, besisukanti aplink Žemę 7,6 km/s greičiu (informacijai, TKS apsisukimo aplink Žemę laikotarpis yra tik 92 minutės 37 sekundės), TKS tarsi nuolat praleidžia ir nekrenta. Be to, TKS turi variklius, leidžiančius nuolat reguliuoti 400 tonų sveriančio koloso padėtį.

Tarptautinė kosminė stotis

Tarptautinė kosminė stotis, sant. (Anglų) Tarptautinė kosminė stotis, santrumpa ISS) – pilotuojamas, naudojamas kaip daugiafunkcis kosminių tyrimų kompleksas. TKS yra bendras tarptautinis projektas, kuriame dalyvauja 14 šalių (abėcėlės tvarka): Belgija, Vokietija, Danija, Ispanija, Italija, Kanada, Nyderlandai, Norvegija, Rusija, JAV, Prancūzija, Šveicarija, Švedija, Japonija. Pirmieji dalyviai buvo Brazilija ir JK.

TKS valdo Rusijos segmentas iš Kosminių skrydžių valdymo centro Koroleve ir Amerikos segmentas iš Lyndono Johnsono misijos valdymo centro Hiustone. Laboratorinių modulių – Europos Kolumbo ir Japonijos Kibo – valdymą kontroliuoja Europos kosmoso agentūros (Oberpfaffenhofen, Vokietija) ir Japonijos aerokosminių tyrimų agentūros (Tsukuba, Japonija) valdymo centrai. Centrai nuolat keičiasi informacija.

Kūrybos istorija

1984 metais JAV prezidentas Ronaldas Reiganas paskelbė apie Amerikos orbitinės stoties kūrimo darbų pradžią. 1988 m. planuojama stotis buvo pavadinta „Laisvė“. Tuo metu tai buvo bendras JAV, ESA, Kanados ir Japonijos projektas. Buvo suplanuota didelio dydžio valdoma stotis, kurios moduliai po vieną būtų pristatomi į „Space Shuttle“ orbitą. Tačiau 1990-ųjų pradžioje tapo aišku, kad projekto kūrimo kaina buvo per didelė ir tik tarptautinis bendradarbiavimas leistų sukurti tokią stotį. SSRS, jau turėjusi patirties kuriant ir paleidžiant į orbitą Salyut orbitines stotis, taip pat stotį Mir, 1990-ųjų pradžioje planavo sukurti stotį Mir-2, tačiau dėl ekonominių sunkumų projektas buvo sustabdytas.

1992 m. birželio 17 d. Rusija ir JAV sudarė susitarimą dėl bendradarbiavimo kosmoso tyrimų srityje. Pagal ją Rusijos kosmoso agentūra (RSA) ir NASA sukūrė bendrą „Mir-Shuttle“ programą. Ši programa numatė amerikiečių daugkartinio naudojimo erdvėlaivių skrydžius į Rusijos kosminę stotį Mir, rusų kosmonautų įtraukimą į amerikietiškų šaudyklių įgulas ir amerikiečių astronautus į erdvėlaivio Sojuz ir stoties Mir įgulas.

Įgyvendinant „Mir-Shuttle“ programą, gimė idėja suvienyti nacionalines programas, skirtas orbitinėms stotims kurti.

1993 m. kovo mėn. RSA generalinis direktorius Jurijus Koptevas ir NPO Energia generalinis dizaineris Jurijus Semjonovas pasiūlė NASA vadovui Danieliui Goldinui sukurti Tarptautinę kosminę stotį.

1993 metais daugelis JAV politikų buvo prieš kosminės orbitinės stoties statybą. 1993 m. birželį JAV Kongresas aptarė pasiūlymą atsisakyti Tarptautinės kosminės stoties kūrimo. Šis pasiūlymas nebuvo priimtas tik vieno balso persvara: 215 balsų už atsisakymą, 216 balsų už stoties statybą.

1993 m. rugsėjo 2 d. JAV viceprezidentas Alas Gore'as ir Rusijos ministrų tarybos pirmininkas Viktoras Černomyrdinas paskelbė apie naują „tikrai tarptautinės kosminės stoties“ projektą. Nuo to momento oficialus stoties pavadinimas tapo „Tarptautinė kosminė stotis“, nors tuo pat metu buvo naudojamas ir neoficialus pavadinimas - Alfa kosminė stotis.

TKS, 1999 m. liepos mėn. Viršuje yra Unity modulis, apačioje su dislokuotomis saulės baterijomis – Zarya

1993 m. lapkričio 1 d. RSA ir NASA pasirašė „Išsamų Tarptautinės kosminės stoties darbo planą“.

1994 m. birželio 23 d. Jurijus Koptevas ir Danielis Goldinas Vašingtone pasirašė „Laikinąjį susitarimą dėl darbo, vedančio į Rusijos partnerystę nuolatinėje civilinėje pilotuojamoje kosminėje stotyje“, pagal kurį Rusija oficialiai prisijungė prie darbo prie TKS.

1994 m. lapkritis – Maskvoje įvyko pirmosios Rusijos ir Amerikos kosmoso agentūrų konsultacijos, sudarytos sutartys su projekte dalyvaujančiomis kompanijomis – Boeing ir RSC Energia. S. P. Koroleva.

1995 m. kovo mėn. – Kosmoso centre. L. Johnson Hiustone, buvo patvirtintas preliminarus stoties projektas.

1996 – patvirtinta stoties konfigūracija. Jį sudaro du segmentai - rusų (modernizuota Mir-2 versija) ir amerikiečių (dalyvauja Kanada, Japonija, Italija, Europos kosmoso agentūros šalys narės ir Brazilija).

1998 m. lapkričio 20 d. – Rusija paleido pirmąjį TKS elementą – funkcinį krovinių bloką „Zarya“, kuris buvo paleistas raketa „Proton-K“ (FGB).

1998 m. gruodžio 7 d. – šaudyklė „Endeavour“ prijungė amerikietišką modulį „Unity“ (Node-1) prie „Zarya“ modulio.

1998 m. gruodžio 10 d. buvo atidarytas „Unity“ modulio liukas ir į stotį įėjo Kabana ir Krikalevas, kaip JAV ir Rusijos atstovai.

2000 m. liepos 26 d. - Zvezda aptarnavimo modulis (SM) buvo prijungtas prie funkcinio krovinių bloko "Zarya".

2000 m. lapkričio 2 d. – pilotuojamas transporto erdvėlaivis (TPS) Sojuz TM-31 į TKS pristatė pirmosios pagrindinės ekspedicijos įgulą.

TKS, 2000 m. liepos mėn. Prijungti moduliai iš viršaus į apačią: „Unity“, „Zarya“, „Zvezda“ ir „Progress“ laivas

2001 m. vasario 7 d. – STS-98 misijos metu laivo „Atlantis“ įgula amerikietišką mokslinį modulį „Destiny“ prijungė prie „Unity“ modulio.

2005 m. balandžio 18 d. – NASA vadovas Michaelas Griffinas Senato Kosmoso ir mokslo komiteto posėdyje paskelbė, kad reikia laikinai sumažinti mokslinius tyrimus Amerikos stoties segmente. Tai buvo reikalinga siekiant atlaisvinti lėšų paspartinti naujos pilotuojamos transporto priemonės (CEV) kūrimui ir statybai. Naujas pilotuojamas erdvėlaivis buvo reikalingas norint užtikrinti nepriklausomą JAV patekimą į stotį, nes po Kolumbijos katastrofos 2003 m. vasario 1 d. JAV laikinai neturėjo tokios prieigos iki 2005 m. liepos mėn., kai buvo atnaujinti maršrutiniai skrydžiai.

Po Kolumbijos katastrofos ilgalaikių TKS įgulos narių skaičius sumažėjo nuo trijų iki dviejų. Taip buvo dėl to, kad stotis įgulos gyvenimui reikalingomis medžiagomis buvo aprūpinama tik Rusijos „Progress“ krovininiais laivais.

2005 m. liepos 26 d. maršrutiniai skrydžiai buvo atnaujinti sėkmingai paleidus „Discovery“ šaudyklą. Iki 2010 m. iki šaudyklos eksploatavimo pabaigos buvo numatyta atlikti 17 skrydžių, kurių metu į stotį buvo pristatyta įranga ir moduliai, reikalingi tiek stočiai užbaigti, tiek kai kurios įrangos, ypač Kanados manipuliatoriaus, atnaujinimui. ISS.

Antrasis maršrutinis skrydis po Kolumbijos katastrofos (Shuttle Discovery STS-121) įvyko 2006 m. liepos mėn. Šiuo šautuvu į TKS atvyko vokiečių kosmonautas Thomas Reiteris ir prisijungė prie ilgalaikės ekspedicijos ISS-13 įgulos. Taip po trejų metų pertraukos trys kosmonautai vėl pradėjo dirbti ilgalaikėje ekspedicijoje į TKS.

ISS, 2002 m. balandžio mėn

2006 m. rugsėjo 9 d. paleistas šaudyklės „Atlantis“ į TKS pristatė du TKS santvarų konstrukcijų segmentus, dvi saulės baterijas, taip pat amerikietiško segmento šilumos valdymo sistemos radiatorius.

2007 m. spalio 23 d. amerikietiškas modulis „Harmony“ atvyko į „Discovery“ šaudyklą. Jis buvo laikinai prijungtas prie Unity modulio. Po pakartotinio prijungimo 2007 m. lapkričio 14 d. Harmony modulis buvo nuolat prijungtas prie Destiny modulio. Baigtas statyti pagrindinis amerikietiškas TKS segmentas.

ISS, 2005 m. rugpjūčio mėn

2008 metais stotis išsiplėtė dviem laboratorijomis. Vasario 11 d. buvo prijungtas Europos kosmoso agentūros užsakytas modulis „Columbus“, o kovo 14 ir birželio 4 dienomis buvo prijungti du iš trijų pagrindinių Japonijos aerokosminių tyrimų agentūros sukurto laboratorijos modulio „Kibo“ skyrių – Eksperimentinės krovinių skyriaus (ELM) PS slėginė dalis) ir sandarus skyrius (PM).

2008-2009 metais pradėjo eksploatuoti naujas transporto priemones: Europos kosmoso agentūros „ATV“ (pirmasis startas įvyko 2008 m. kovo 9 d., naudingoji apkrova – 7,7 tonos, 1 skrydis per metus) ir Japonijos kosminių tyrimų agentūra „H. -II transporto priemonė "(pirmasis paleidimas įvyko 2009 m. rugsėjo 10 d., naudingoji apkrova - 6 tonos, 1 skrydis per metus).

2009 m. gegužės 29 d. darbą pradėjo ilgalaikė šešių žmonių ISS-20 įgula, pristatyta dviem etapais: pirmieji trys žmonės atvyko į Sojuz TMA-14, vėliau prie jų prisijungė Sojuz TMA-15 įgula. Didele dalimi įgulos padidėjimą lėmė išaugusios galimybės pristatyti krovinius į stotį.

ISS, 2006 m. rugsėjo mėn

2009 m. lapkričio 12 d. mažasis tyrimų modulis MIM-2 buvo prijungtas prie stoties, prieš pat paleidimą pavadintas „Poisk“. Tai ketvirtasis rusiško stoties segmento modulis, sukurtas Pirs prijungimo mazgo pagrindu. Modulio galimybės leidžia atlikti kai kuriuos mokslinius eksperimentus, taip pat kartu tarnauti kaip prieplauka Rusijos laivams.

2010 m. gegužės 18 d. Rusijos mažasis tyrimų modulis Rassvet (MIR-1) buvo sėkmingai prijungtas prie TKS. „Rassvet“ prijungimo prie Rusijos funkcinio krovinių bloko „Zarya“ operaciją atliko manipuliatorius iš amerikiečio. kosminis laivas Atlantida, o paskui TKS manipuliatorius.

ISS, 2007 m. rugpjūčio mėn

2010 m. vasario mėn. Tarptautinės kosminės stoties daugiašalė valdymo taryba patvirtino, kad šiuo metu nėra žinomų techninių apribojimų tolesniam TKS eksploatavimui po 2015 m., o JAV administracija pateikė tolesnis naudojimas ISS bent iki 2020 m. NASA ir „Roscosmos“ svarsto galimybę pratęsti šį terminą bent iki 2024 m., o galbūt pratęsti iki 2027 m. 2014 metų gegužę Rusijos ministro pirmininko pavaduotojas Dmitrijus Rogozinas pareiškė: „Rusija neketina pratęsti Tarptautinės kosminės stoties veiklos ilgiau nei 2020 m.“.

2011 m. buvo baigti daugkartinio naudojimo erdvėlaivių, tokių kaip „Space Shuttle“, skrydžiai.

ISS, 2008 m. birželio mėn

2012 metų gegužės 22 dieną iš Kanaveralo kyšulio kosminio centro buvo paleista raketa Falcon 9, gabenusi privatų kosminį krovininį laivą Dragon. Tai pirmas bandomasis privataus erdvėlaivio skrydis į Tarptautinę kosminę stotį.

2012 m. gegužės 25 d. erdvėlaivis Dragon tapo pirmuoju komerciniu erdvėlaiviu, prisijungusiu prie TKS.

2013 metų rugsėjo 18 dieną privatus automatinio krovinių tiekimo erdvėlaivis „Cygnus“ pirmą kartą priartėjo prie TKS ir buvo prišvartuotas.

ISS, 2011 m. kovo mėn

Planuojami renginiai

Planuose – reikšmingas Rusijos erdvėlaivių „Sojuz“ ir „Progress“ modernizavimas.

2017 metais prie TKS planuojama prijungti rusišką 25 tonas sveriantį daugiafunkcinį laboratorinį modulį (MLM) „Nauka“. Jis užims Pirs modulio vietą, kuris bus atjungtas ir užtvindytas. Be kita ko, naujasis rusiškas modulis visiškai perims „Pirs“ funkcijas.

„NEM-1“ (mokslo ir energetikos modulis) - pirmasis modulis, pristatymas planuojamas 2018 m.;

„NEM-2“ (mokslinis ir energetikos modulis) – antrasis modulis.

UM (mazginis modulis) Rusijos segmentui - su papildomais prijungimo mazgais. Pristatymas planuojamas 2017 m.

Stoties struktūra

Stoties struktūra pagrįsta modulinis principas. TKS surenkama nuosekliai į kompleksą pridedant kitą modulį ar bloką, kuris prijungiamas prie jau atvežto į orbitą.

2013 m. TKS sudaro 14 pagrindinių modulių, rusiški - „Zarya“, „Zvezda“, „Pirs“, „Poisk“, „Rassvet“; Amerikietiški – „Unity“, „Destiny“, „Quest“, „Tranquility“, „Dome“, „Leonardo“, „Harmony“, europietiški – „Columbus“ ir japoniški – „Kibo“.

  • "Zarya"- funkcinis krovininis modulis „Zarya“, pirmasis iš TKS modulių, pristatytas į orbitą. Modulio svoris - 20 tonų, ilgis - 12,6 m, skersmuo - 4 m, tūris - 80 m³. Įrengti reaktyviniai varikliai stoties orbitai koreguoti ir didelės saulės baterijos. Numatoma, kad modulio tarnavimo laikas bus mažiausiai 15 metų. Amerikiečių finansinis įnašas į „Zarya“ sukūrimą siekia apie 250 mln. USD, Rusijos – per 150 mln.
  • P.M. panelė- anti-meteoritinė plokštė arba anti-mikrometeorinė apsauga, kuri, Amerikos pusės reikalavimu, montuojama ant modulio Zvezda;
  • "Žvaigždė"- „Zvezda“ paslaugų modulis, kuriame yra skrydžių valdymo sistemos, gyvybės palaikymo sistemos, energijos ir informacijos centras, taip pat kajutės astronautams. Modulio svoris - 24 tonos. Modulis yra padalintas į penkis skyrius ir turi keturis prijungimo taškus. Visos jos sistemos ir blokai yra rusiški, išskyrus borto kompiuterių kompleksą, sukurtą dalyvaujant Europos ir Amerikos specialistams;
  • MIME- nedideli tyrimų moduliai, du rusiški krovinių moduliai „Poisk“ ir „Rassvet“, skirti saugoti moksliniams eksperimentams reikalingai įrangai. „Paieška“ prisišvartavo prie priešlėktuvinio aparato įkrovos stotelė„Zvezda“ modulis, o „Rassvet“ - į „Zarya“ modulio žemiausią prievadą;
  • "Mokslas"- Rusijos daugiafunkcis laboratorinis modulis, suteikiantis sąlygas saugoti mokslinę įrangą, atlikti mokslinius eksperimentus, laikinai apgyvendinti įgulą. Taip pat suteikia europietiško manipuliatoriaus funkcionalumą;
  • ERA- Europos nuotolinis manipuliatorius, skirtas perkelti įrangą, esančią už stoties ribų. Bus paskirtas į Rusijos MLM mokslinę laboratoriją;
  • Slėginis adapteris- sandarus prijungimo adapteris, skirtas sujungti ISS modulius tarpusavyje ir užtikrinti šaudyklų prijungimą;
  • "Ramus"- TKS modulis, atliekantis gyvybės palaikymo funkcijas. Sudėtyje yra vandens perdirbimo, oro regeneravimo, atliekų šalinimo ir tt sistemos. Prijungta prie Unity modulio;
  • "Vienybė"- pirmasis iš trijų ISS jungiamųjų modulių, kuris veikia kaip prijungimo mazgas ir maitinimo jungiklis moduliams „Quest“, „Nod-3“, fermai Z1 ir transportiniams laivams, prijungtiems prie jo per slėgio adapterį-3;
  • "prieplauka"- švartavimosi uostas, skirtas Rusijos Progress ir Sojuz lėktuvų prijungimui; įdiegta Zvezda modulyje;
  • VSP- išorinės saugojimo platformos: trys išorinės neslėginės platformos, skirtos tik prekėms ir įrangai laikyti;
  • Ūkiai- kombinuota santvarinė konstrukcija, ant kurios elementų sumontuotos saulės baterijos, radiatorių skydai ir nuotoliniai manipuliatoriai. Taip pat skirtas nehermetiškam krovinių ir įvairios įrangos sandėliavimui;
  • "Canadarm2", arba „Mobile Service System“ – Kanados nuotolinių manipuliatorių sistema, tarnaujanti kaip pagrindinis įrankis transporto laivams iškrauti ir išorinei įrangai perkelti;
  • "Dextre"- Kanados dviejų nuotolinių manipuliatorių sistema, naudojama įrangai perkelti už stoties ribų;
  • "Ieškojimas"- specializuotas vartų modulis, skirtas kosmonautų ir astronautų pasivaikščiojimams į kosmosą su išankstinio desaturacijos galimybe (išplaunamas azotas iš žmogaus kraujo);
  • "Harmonija"- jungiamąjį modulį, kuris veikia kaip prijungimo blokas ir maitinimo jungiklis trims mokslinėms laboratorijoms ir transporto laivams, prijungtiems prie jo per Hermoadapter-2. Sudėtyje yra papildomos sistemos gyvybės palaikymas;
  • "Kolumbas"- Europos laboratorinis modulis, kuriame, be mokslinės įrangos, sumontuoti tinklo komutatoriai (koncentratoriai), užtikrinantys ryšį tarp stoties kompiuterinės įrangos. Prijungtas prie Harmony modulio;
  • "Likimas"- Amerikietiškas laboratorijos modulis, prijungtas prie Harmony modulio;
  • "Kibo"- Japoniškas laboratorinis modulis, susidedantis iš trijų skyrių ir vieno pagrindinio nuotolinio manipuliatoriaus. Didžiausias stoties modulis. Skirta fiziniams, biologiniams, biotechnologiniams ir kitiems moksliniams eksperimentams atlikti uždarose ir nesandariose sąlygose. Be to, dėl ypatingo dizaino jis leidžia atlikti neplanuotus eksperimentus. Prijungtas prie Harmony modulio;

TKS apžvalgos kupolas.

  • "Kupolas"- skaidrus apžvalgos kupolas. Septyni jo langai (didžiausias 80 cm skersmens) naudojami eksperimentams atlikti, erdvės stebėjimui ir erdvėlaivių prijungimui, taip pat kaip pagrindinio stoties nuotolinio manipuliatoriaus valdymo pultas. Įgulos narių poilsio zona. Sukūrė ir pagamino Europos kosmoso agentūra. Įdiegta „Tranquility node“ modulyje;
  • TSP- keturios neslėginės platformos, pritvirtintos prie 3 ir 4 santvarų, skirtos įrangai, reikalingai moksliniams eksperimentams atlikti vakuume, talpinti. Teikti eksperimentinių rezultatų apdorojimą ir perdavimą didelės spartos kanalais į stotį.
  • Sandarus daugiafunkcis modulis- sandėliavimo vieta kroviniams laikyti, prijungta prie žemiausio Destiny modulio prijungimo prievado.

Be aukščiau išvardytų komponentų, yra trys krovinių moduliai: Leonardo, Raphael ir Donatello, kurie periodiškai pristatomi į orbitą, kad TKS aprūpintų reikiama moksline įranga ir kitais kroviniais. Moduliai bendru pavadinimu "Daugiafunkcis tiekimo modulis", buvo pristatyti į vežimėlių krovinių skyrių ir prijungti prie Unity modulio. Nuo 2011 m. kovo pakeistas Leonardo modulis yra vienas iš stoties modulių, vadinamas nuolatiniu daugiafunkciu moduliu (PMM).

Elektros tiekimas į stotį

ISS 2001 m. Matosi Zarya ir Zvezda modulių saulės baterijos bei P6 santvaros konstrukcija su amerikietiškomis saulės baterijomis.

Vienintelis TKS elektros energijos šaltinis yra šviesa, kurią stoties saulės baterijos paverčia elektra.

Rusijos TKS segmente naudojama pastovi 28 voltų įtampa, panaši į naudojamą erdvėlaiviuose „Space Shuttle“ ir „Sojuz“. Elektrą tiesiogiai gamina „Zarya“ ir „Zvezda“ modulių saulės baterijos, taip pat gali būti perduodama iš amerikietiško segmento į rusišką per ARCU įtampos keitiklį ( Amerikos-Rusijos keitiklio vienetas) ir priešinga kryptimi per RACU įtampos keitiklį ( Keitiklis iš Rusijos į Ameriką).

Iš pradžių buvo planuota, kad stotis elektros energija bus tiekiama naudojant rusišką Mokslinės energijos platformos (NEP) modulį. Tačiau po Kolumbijos šaudyklų katastrofos stoties surinkimo programa ir šaudyklų skrydžių tvarkaraštis buvo peržiūrėtas. Be kita ko, jie taip pat atsisakė pristatyti ir įdiegti NEP, taigi Šis momentas Didžiąją dalį elektros energijos gamina saulės baterijos Amerikos sektoriuje.

Amerikietiškame segmente saulės kolektoriai organizuojami taip: dvi lanksčios sulankstomos saulės baterijos sudaro vadinamąjį saulės sparną ( Saulės masyvo sparnas, Pjūklas), iš viso keturios poros tokių sparnų yra ant stoties santvarų konstrukcijų. Kiekvienas sparnas yra 35 m ilgio ir 11,6 m pločio, o jo efektyvi sritis yra 298 m², o bendra jo pagaminama galia gali siekti 32,8 kW. Saulės baterijos generuoja 115–173 voltų pirminę nuolatinės srovės įtampą, kuri tada, naudojant DDCU įrenginius, Nuolatinės srovės į nuolatinės srovės keitiklio bloką ), paverčiama antrine stabilizuota 124 voltų nuolatine įtampa. Ši stabilizuota įtampa tiesiogiai naudojama amerikietiškojo stoties segmento elektros įrangai maitinti.

Saulės baterija ISS

Stotis vieną apsisukimą aplink Žemę padaro per 90 minučių ir maždaug pusę šio laiko praleidžia Žemės šešėlyje, kur saulės baterijos neveikia. Tada jo maitinimas gaunamas iš nikelio-vandenilio buferinių baterijų, kurios įkraunamos, kai ISS grįžta į saulės šviesą. Baterijos veikimo laikas – 6,5 metų, tikimasi, kad per stoties gyvavimo laiką jos bus keičiamos kelis kartus. Pirmasis akumuliatoriaus keitimas buvo atliktas P6 segmente astronautų išėjimo į kosmosą metu, kai 2009 m. liepos mėn.

At normaliomis sąlygomis JAV sektoriaus saulės masyvai seka Saulę, kad maksimaliai padidintų energijos gamybą. Saulės baterijos yra nukreiptos į Saulę naudojant „Alpha“ ir „Beta“ diskus. Stotyje sumontuotos dvi Alfa pavaros, kurios sukasi keletą sekcijų su ant jų esančiomis saulės baterijomis aplink išilginę santvarų konstrukcijų ašį: pirmoji pavara sukasi sekcijas nuo P4 į P6, antroji – nuo ​​S4 iki S6. Kiekvienas saulės baterijos sparnas turi savo Beta pavarą, kuri užtikrina sparno sukimąsi jo išilginės ašies atžvilgiu.

Kai TKS yra Žemės šešėlyje, saulės baterijos perjungiamos į Night Glider režimą ( Anglų) („Nakties planavimo režimas“), tokiu atveju jie pasisuka kraštais judėjimo kryptimi, kad sumažintų atmosferos pasipriešinimą, esantį stoties skrydžio aukštyje.

Susisiekimo priemonės

Telemetrijos perdavimas ir keitimasis moksliniais duomenimis tarp stoties ir Misijos valdymo centro vykdomas radijo ryšiu. Be to, radijo ryšiai naudojami pasimatymų ir doko operacijų metu, garso ir vaizdo ryšiui tarp įgulos narių bei su skrydžių valdymo specialistais Žemėje, taip pat su astronautų artimaisiais ir draugais. Taigi, TKS yra aprūpintos vidinėmis ir išorinėmis daugiafunkcėmis ryšių sistemomis.

Rusijos TKS segmentas tiesiogiai bendrauja su Žeme naudodamas „Zvezda“ modulyje sumontuotą radijo anteną „Lyra“. „Lira“ suteikia galimybę naudotis „Luch“ palydovine duomenų perdavimo sistema. Ši sistema buvo naudojama ryšiui su Mir stotimi, tačiau 1990-aisiais ji sunyko ir šiuo metu nenaudojama. Sistemos funkcionalumui atkurti Luch-5A buvo paleista 2012 m. 2014 metų gegužę orbitoje veikė 3 Luch daugiafunkcinės erdvės relių sistemos - Luch-5A, Luch-5B ir Luch-5V. 2014 m. Rusijos stoties segmente planuojama įdiegti specializuotą abonentinę įrangą.

Kita Rusijos ryšio sistema „Voskhod-M“ užtikrina telefono ryšį tarp „Zvezda“, „Zarya“, „Pirs“, „Poisk“ modulių ir amerikietiško segmento, taip pat VHF radijo ryšį su antžeminiais valdymo centrais naudojant išorinių antenų modulį „Zvezda“.

Amerikietiškame segmente ryšiui S juostoje (garso perdavimas) ir K u juostoje (garso, vaizdo, duomenų perdavimas) naudojamos dvi atskiros sistemos, išdėstytos ant Z1 santvaros konstrukcijos. Šių sistemų radijo signalai perduodami į Amerikos geostacionarius TDRSS palydovus, o tai leidžia beveik nuolat palaikyti ryšį su misijos valdymu Hiustone. Duomenys iš Canadarm2, europietiško „Columbus“ modulio ir japoniško „Kibo“ yra nukreipiami per šias dvi ryšio sistemas, tačiau Amerikos TDRSS duomenų perdavimo sistema ilgainiui bus papildyta Europos palydovine sistema(EDRS) ir panašių japonų. Ryšys tarp modulių vyksta per vidinį skaitmeninį belaidį tinklą.

Ėjimo į kosmosą metu astronautai naudoja UHF VHF siųstuvą. VHF radijo ryšį taip pat naudoja erdvėlaivių „Sojuz“, „Progress“, HTV, ATV ir „Space Shuttle“ prijungimo arba atjungimo metu (nors šaudyklėse taip pat naudojami S ir K u juostos siųstuvai per TDRSS). Jos pagalba šie erdvėlaiviai gauna komandas iš Misijos valdymo centro arba iš TKS įgulos narių. Automatiniai erdvėlaiviai aprūpinti savo ryšio priemonėmis. Taigi keturračiai laivai naudoja specializuotą sistemą pasimatymų ir priplaukimo metu Artumo ryšio įranga (PCE), kurio įranga yra keturratyje ir Zvezda modulyje. Ryšys vykdomas dviem visiškai nepriklausomais S juostos radijo kanalais. PCE pradeda veikti nuo santykinio maždaug 30 kilometrų atstumo ir išjungiamas po to, kai keturratis yra prijungtas prie ISS ir persijungia į sąveiką per borto MIL-STD-1553 magistralę. Norint tiksliai nustatyti santykinę keturračio ir ISS padėtį, naudojama keturratyje įdiegta lazerinė nuotolio ieškiklio sistema, leidžianti tiksliai prijungti stotį.

Stotyje yra maždaug šimtas IBM ir Lenovo nešiojamų ThinkPad kompiuterių, modelių A31 ir T61P, kuriuose veikia Debian GNU/Linux. Tai paprasti serijiniai kompiuteriai, kurie, tačiau buvo modifikuoti naudoti TKS, visų pirma buvo pertvarkytos jungtys ir aušinimo sistema, atsižvelgta į stotyje naudojamą 28 voltų įtampą, saugos reikalavimus darbo esant nulinei gravitacijai. Nuo 2010 m. sausio mėn. stotis teikia tiesioginę interneto prieigą Amerikos segmentui. ISS esantys kompiuteriai yra prijungti per „Wi-Fi“. bevielis tinklas ir yra prijungti prie Žemės 3 Mbit/s greičiu siuntimui ir 10 Mbit/s greičiu, kas prilygsta namų ADSL ryšiui.

Vonios kambarys astronautams

OS tualetas skirtas tiek vyrams, tiek moterims, jis atrodo lygiai taip pat, kaip ir Žemėje, tačiau turi daugybę dizaino ypatybių. Tualete sumontuoti kojų spaustukai ir laikikliai šlaunims, įmontuoti galingi oro siurbliai. Astronautas specialiu spyruokliniu laikikliu tvirtinamas prie klozeto sėdynės, tada įjungiamas galingas ventiliatorius ir atidaroma įsiurbimo anga, į kurią oro srautas išneša visas atliekas.

ISS oras iš tualetų būtinai filtruojamas prieš patenkant į gyvenamąsias patalpas, kad būtų pašalintos bakterijos ir kvapas.

Šiltnamis astronautams

Švieži žalumynai, užauginti mikrogravitacijoje, pirmą kartą oficialiai įtraukiami į Tarptautinės kosminės stoties meniu. 2015 metų rugpjūčio 10 dieną astronautai išbandys salotas, surinktas iš orbitinės Veggie plantacijos. Daugelis žiniasklaidos priemonių pranešė, kad pirmą kartą astronautai išbandė savo pačių užaugintą maistą, tačiau šis eksperimentas buvo atliktas Mir stotyje.

Moksliniai tyrimai

Kuriant TKS vienas pagrindinių tikslų buvo galimybė stotyje atlikti eksperimentus, kuriems reikalingos unikalios kosminio skrydžio sąlygos: mikrogravitacija, vakuumas, žemės atmosferos nesusilpnėjusi kosminė spinduliuotė. Pagrindinės mokslinių tyrimų sritys apima biologiją (įskaitant biomedicininius tyrimus ir biotechnologijas), fiziką (įskaitant skysčių fiziką, medžiagų mokslą ir kvantinę fiziką), astronomiją, kosmologiją ir meteorologiją. Tyrimai atliekami naudojant mokslinę įrangą, daugiausia esančią specializuotuose mokslo moduliuose-laboratorijose, dalis eksperimentų, kuriems reikalingas vakuumas, įrangos fiksuojama už stoties, už jos hermetinio tūrio ribų.

ISS moksliniai moduliai

Šiuo metu (2012 m. sausio mėn.) stotyje yra trys specialūs moksliniai moduliai – amerikiečių laboratorija „Destiny“, paleista 2001 m. vasario mėn., Europos tyrimų modulis „Columbus“, pristatytas į stotį 2008 m. vasario mėn., ir Japonijos tyrimų modulis „Kibo“. Europos tyrimų modulyje įrengta 10 stelažų, kuriuose sumontuoti instrumentai įvairių mokslo sričių tyrimams. Kai kurie stovai yra specializuoti ir įrengti biologijos, biomedicinos ir skysčių fizikos tyrimams. Likę stelažai yra universalūs, juose esanti įranga gali keistis priklausomai nuo atliekamų eksperimentų.

Japonijos tyrimų modulis Kibo susideda iš kelių dalių, kurios buvo nuosekliai pristatomos ir sumontuotos orbitoje. Pirmasis Kibo modulio skyrius yra sandarus eksperimentinis transportavimo skyrius. JEM eksperimentinis logistikos modulis – slėginė sekcija ) buvo pristatytas į stotį 2008 m. kovo mėn., skrendant „Endeavour“ šaudyklai STS-123. Paskutinė „Kibo“ modulio dalis prie stoties buvo pritvirtinta 2009 m. liepos mėn., kai šaulys į TKS pristatė nesandarią eksperimentinį transportavimo skyrių. Eksperimento logistikos modulis, beslėgis skyrius ).

Rusija orbitinėje stotyje turi du „mažuosius tyrimų modulius“ (SRM) – „Poisk“ ir „Rassvet“. Taip pat planuojama į orbitą pristatyti daugiafunkcį laboratorinį modulį „Nauka“ (MLM). Tik pastarieji turės visavertes mokslines galimybes, dviejuose MIM esančios mokslinės įrangos kiekis yra minimalus.

Bendradarbiavimo eksperimentai

Tarptautinis TKS projekto pobūdis palengvina bendrus mokslinius eksperimentus. Tokį bendradarbiavimą plačiausiai plėtoja Europos ir Rusijos mokslo institucijos, globojamos ESA ir Rusijos federalinei kosmoso agentūrai. Žymūs pavyzdžiai Toks bendradarbiavimas buvo eksperimentas „Plazmos kristalas“, skirtas dulkėtos plazmos fizikai, kurį atliko Maxo Plancko draugijos Nežemiškos fizikos institutas, Aukštų temperatūrų institutas ir Rusijos akademijos Cheminės fizikos problemų institutas. Mokslai, taip pat daugybė kitų Rusijos ir Vokietijos mokslo institucijų, medicininis ir biologinis eksperimentas „Matryoshka-P“, kurio metu manekenai naudojami jonizuojančiosios spinduliuotės sugertajai dozei nustatyti - biologinių objektų ekvivalentai, sukurti institute Rusijos mokslų akademijos ir Kelno kosmoso medicinos instituto medicinos ir biologinės problemos.

Rusijos pusė taip pat yra ESA ir Japonijos aerokosminių tyrimų agentūros sutarčių eksperimentų rangovė. Pavyzdžiui, Rusijos kosmonautai išbandė ROKVISS robotinę eksperimentinę sistemą. Robotų komponentų patikra ISS- robotų komponentų bandymas TKS), sukurtas Robotikos ir mechanotronikos institute, esančiame Wessling mieste, netoli Miuncheno, Vokietijoje.

rusų studijos

Žvakės deginimo Žemėje (kairėje) ir mikrogravitacijos TKS (dešinėje) palyginimas

1995 m. buvo paskelbtas konkursas tarp Rusijos mokslo ir mokymo įstaigų, pramonės organizacijų atlikti mokslinius tyrimus Rusijos TKS segmente. Vienuolikoje pagrindinių tyrimų sričių gautos 406 paraiškos iš aštuoniasdešimties organizacijų. RSC Energia specialistams įvertinus šių programų technines galimybes, 1999 m. buvo priimta „Ilgalaikė mokslinių ir taikomųjų tyrimų bei eksperimentų, planuojamų Rusijos TKS segmente, programa“. Programą patvirtino Rusijos mokslų akademijos prezidentas Ju. S. Osipovas ir Rusijos aviacijos ir kosmoso agentūros (dabar FKA) generalinis direktorius Ju. N. Koptevas. Pirmieji Rusijos TKS segmento tyrimai buvo pradėti pirmosios pilotuojamos ekspedicijos metu 2000 m. Pagal pirminį TKS projektą buvo planuojama paleisti du didelius Rusijos tyrimų modulius (RM). Moksliniams eksperimentams atlikti reikalingą elektros energiją turėjo tiekti Mokslinė energijos platforma (SEP). Tačiau dėl nepakankamo finansavimo ir vėlavimo statyti TKS, visi šie planai buvo atšaukti ir buvo atšauktas vienas mokslinis modulis, kuriam nereikėjo didelių išlaidų ir papildomos orbitinės infrastruktūros. Nemaža dalis Rusijos atliekamų TKS tyrimų yra sutartiniai arba bendri su užsienio partneriais.

Šiuo metu TKS atliekami įvairūs medicininiai, biologiniai ir fiziniai tyrimai.

Amerikos segmento tyrimas

Epstein-Barr virusas parodytas naudojant fluorescencinio antikūnų dažymo techniką

Jungtinės Valstijos vykdo plačią TKS tyrimų programą. Daugelis šių eksperimentų yra tyrimų, atliekamų per šaudyklinius skrydžius su Spacelab moduliais ir Mir-Shuttle programoje kartu su Rusija, tąsa. Pavyzdys yra vieno iš herpeso sukėlėjų – Epstein-Barr viruso – patogeniškumo tyrimas. Remiantis statistika, 90% suaugusių JAV gyventojų yra šio viruso latentinės formos nešiotojai. Skrydžio į kosmosą metu imuninė sistema susilpnėja, virusas gali suaktyvėti ir sukelti įgulos nario ligas. Viruso tyrimo eksperimentai pradėti skrendant STS-108.

Europos studijos

„Columbus“ modulyje įrengta saulės observatorija

Europos moksliniame modulyje „Columbus“ yra 10 standartizuotų stelažų, skirtų pastatymui naudingoji apkrova(ISPR), tačiau kai kurie iš jų pagal susitarimą bus naudojami NASA eksperimentuose. ESA reikmėms stelažuose sumontuota mokslinė įranga: Biolab laboratorija biologiniams eksperimentams atlikti, Skysčių mokslo laboratorija skysčių fizikos srities tyrimams, Europos fiziologijos modulių instaliacija fiziologiniams eksperimentams, taip pat universalus Europos stalčių stovas su įranga, skirta baltymų kristalizacijos (PCDF) eksperimentams atlikti.

STS-122 metu buvo įrengti ir išoriniai eksperimentiniai įrenginiai Columbus moduliui: nuotolinių technologijų eksperimentų platforma EuTEF ir saulės observatorija SOLAR. Planuojama pridėti išorinę bendrojo reliatyvumo ir stygų teorijos bandymų laboratoriją „Atomic Clock Ensemble in Space“.

Japonijos studijos

Kibo modulyje vykdoma tyrimų programa apima globalinio atšilimo Žemėje procesų, ozono sluoksnio ir paviršiaus dykumėjimo tyrimus bei astronominių tyrimų atlikimą rentgeno spindulių diapazone.

Eksperimentais planuojama sukurti didelius ir vienodus baltymų kristalus, kurie padės suprasti ligų mechanizmus ir sukurti naujus gydymo būdus. Be to, bus tiriamas mikrogravitacijos ir radiacijos poveikis augalams, gyvūnams ir žmonėms, taip pat bus atliekami eksperimentai robotikos, ryšių ir energetikos srityse.

2009 m. balandį japonų astronautas Koichi Wakata atliko keletą eksperimentų TKS, kurie buvo atrinkti iš paprastų piliečių pasiūlytų eksperimentų. Astronautas bandė „plaukti“ be gravitacijos, naudodamas įvairius smūgius, įskaitant šliaužiojimą ir drugelį. Tačiau nė vienas iš jų neleido astronautui net pajudėti. Astronautas pažymėjo, kad „net dideli popieriaus lapai negali ištaisyti padėties, jei juos paimsite ir naudosite kaip plekšnes“. Be to, astronautas norėjo žongliruoti futbolo kamuoliu, tačiau šis bandymas buvo nesėkmingas. Tuo tarpu japonas sugebėjo atmušti kamuolį per galvą. Atlikęs šiuos sunkius pratimus be gravitacijos, japonų astronautas išbandė atsispaudimus ir sukimus vietoje.

Apsaugos klausimai

Kosminės šiukšlės

Šaudyklės „Endeavour STS-118“ radiatoriaus skydelyje atsirado skylė, susidariusi susidūrus su kosminėmis šiukšlėmis

Kadangi TKS juda palyginti žema orbita, yra tam tikra tikimybė, kad stotis ar astronautai, vykstantys į kosmosą, susidurs su vadinamosiomis kosminėmis šiukšlėmis. Tai gali būti tiek dideli objektai, kaip raketų pakopos ar sugedę palydovai, tiek maži objektai, tokie kaip kietųjų raketų variklių šlakas, US-A serijos palydovų reaktorių įrenginių aušinimo skysčiai ir kitos medžiagos bei objektai. Be to, papildomą grėsmę kelia gamtos objektai, tokie kaip mikrometeoritai. Atsižvelgiant į kosminius greičius orbitoje, net ir smulkūs objektai gali rimtai pakenkti stočiai, o galimo smūgio į kosmonauto skafandrą atveju mikrometeoritai gali pramušti korpusą ir sukelti slėgio sumažėjimą.

Siekiant išvengti tokių susidūrimų, iš Žemės vykdomas nuotolinis kosminių šiukšlių elementų judėjimo stebėjimas. Jei tokia grėsmė atsiranda tam tikru atstumu nuo TKS, stoties įgula gauna atitinkamą įspėjimą. Astronautai turės pakankamai laiko aktyvuoti DAM sistemą. Nuolaužų išvengimo manevras), kuri yra varomųjų sistemų grupė iš Rusijos stoties segmento. Įjungę variklius jie gali išstumti stotį į aukštesnę orbitą ir taip išvengti susidūrimo. Pavėluotai aptikus pavojų, įgula evakuojama iš TKS erdvėlaiviu „Sojuz“. Dalinė evakuacija TKS įvyko: 2003 m. balandžio 6 d., 2009 m. kovo 13 d., 2011 m. birželio 29 d. ir 2012 m. kovo 24 d.

Radiacija

Nesant masyvaus atmosferos sluoksnio, kuris supa žmones Žemėje, astronautai TKS yra veikiami intensyvesnės nuolatinių kosminių spindulių srautų spinduliuotės. Įgulos nariai per parą gauna maždaug 1 milisiverto radiacijos dozę, kuri maždaug prilygsta žmogaus apšvitos apšvitai Žemėje per metus. Tai padidina astronautų piktybinių navikų atsiradimo riziką, taip pat susilpnina imuninę sistemą. Silpnas astronautų imunitetas gali prisidėti prie infekcinių ligų plitimo tarp įgulos narių, ypač uždaroje stoties erdvėje. Nepaisant pastangų tobulinti radiacinės saugos mechanizmus, radiacijos skvarbos lygis, lyginant su ankstesniais tyrimais, atliktais, pavyzdžiui, Mir stotyje, beveik nepasikeitė.

Stoties korpuso paviršius

Apžiūrint TKS išorinę dangą, ant korpuso paviršiaus ir langų nuolaužų aptikti jūrinio planktono gyvybinės veiklos pėdsakai. Taip pat patvirtintas poreikis valyti išorinį stoties paviršių dėl taršos, atsiradusios dėl erdvėlaivių variklių veikimo.

Teisinė pusė

Teisiniai lygiai

Kosminės stoties teisinius aspektus reglamentuojanti teisinė bazė yra įvairi ir susideda iš keturių lygių:

  • Pirmas Šalių teises ir pareigas nustatantis lygmuo yra „Tarpvyriausybinis susitarimas dėl kosminės stoties“ (angl. Kosminės stoties tarpvyriausybinis susitarimas – I.G.A. ), kurį 1998 m. sausio 29 d. pasirašė penkiolika projekte dalyvaujančių šalių vyriausybių – Kanados, Rusijos, JAV, Japonijos ir vienuolikos Europos kosmoso agentūros valstybių narių (Belgija, Didžioji Britanija, Vokietija, Danija, Ispanija, Italija, Nyderlanduose, Norvegijoje, Prancūzijoje, Šveicarijoje ir Švedijoje). Šio dokumento straipsnis Nr.1 ​​atspindi pagrindinius projekto principus:
    Šis susitarimas yra ilgalaikė tarptautinė sistema, pagrįsta tikra partneryste, skirta visapusiškam pilotuojamos civilinės kosminės stoties projektavimui, kūrimui, plėtrai ir ilgalaikiam naudojimui taikiems tikslams pagal tarptautinę teisę.. Rašant šią sutartį buvo remiamasi 1967 m. Kosmoso sutartimi, kurią ratifikavo 98 šalys, kuri perėmė tarptautinės jūrų ir oro teisės tradicijas.
  • Pirmasis partnerystės lygis yra pagrindas antra lygiu, kuris vadinamas „Susipratimo memorandumais“ (angl. Supratimo memorandumai – SM s ). Šie memorandumai atspindi susitarimus tarp NASA ir keturių nacionalinių kosmoso agentūrų: FSA, ESA, CSA ir JAXA. Memorandumai naudojami išsamiau apibūdinti partnerių vaidmenis ir atsakomybę. Be to, kadangi NASA yra paskirtas TKS valdytojas, tiesioginių susitarimų tarp šių organizacijų nėra, tik su NASA.
  • KAM trečias Į šį lygį įeina barteriniai susitarimai arba susitarimai dėl šalių teisių ir pareigų, pavyzdžiui, 2005 m. NASA ir Roscosmos komercinis susitarimas, kurio sąlygose buvo viena garantuota vieta amerikiečių astronautui erdvėlaivio Sojuz įguloje ir dalis naudingas tūris amerikietiškiems kroviniams nepilotuojamame „Progress“.
  • Ketvirta teisinis lygmuo papildo antrąjį („Memorandumus“) ir iš jo įgyvendina tam tikras nuostatas. To pavyzdys yra „Elgesio kodeksas TKS“, kuris buvo parengtas vadovaujantis Supratimo memorandumo 11 straipsnio 2 dalimi – pavaldumo, drausmės, fizinio ir informacinio saugumo užtikrinimo teisiniai aspektai ir kitos elgesio taisyklės. įgulos nariams.

Nuosavybės struktūra

Projekto nuosavybės struktūra nenumato jo nariams aiškiai nustatyto procento už visos kosminės stoties naudojimą. Pagal 5 straipsnį (IGA), kiekvieno iš partnerių jurisdikcija apima tik tą gamyklos komponentą, kuris yra registruotas pas jį, o už darbuotojų teisės normų pažeidimus gamykloje ar už jos ribų yra nagrinėjamos bylos pagal šalies, kurios piliečiai jie yra, įstatymų.

„Zarya“ modulio vidus

Sutartys dėl TKS išteklių naudojimo yra sudėtingesnės. Rusiški moduliai „Zvezda“, „Pirs“, „Poisk“ ir „Rassvet“ buvo pagaminti ir priklausantys Rusijai, kuri pasilieka teisę juos naudoti. Planuojamas modulis „Nauka“ taip pat bus gaminamas Rusijoje ir bus įtrauktas į rusišką stoties segmentą. „Zarya“ modulį pastatė ir į orbitą pristatė Rusijos pusė, tačiau tai buvo padaryta JAV lėšomis, todėl NASA šiandien yra oficialiai šio modulio savininkė. Naudoti rusiškus modulius ir kitus stoties komponentus šalys partnerės taiko papildomas dvišales sutartis (minėtus trečiąjį ir ketvirtąjį teisinius lygius).

Likusi stoties dalis (JAV moduliai, europietiški ir japoniški moduliai, santvaros konstrukcijos, saulės baterijos ir dvi robotinės rankos) naudojama šalių susitarimu taip (procentais nuo bendro naudojimo laiko):

  1. Kolumbas – 51 % ESA, 49 % NASA
  2. „Kibo“ – 51 % JAXA, 49 % NASA
  3. Destiny – 100% NASA

Be to:

  • NASA gali naudoti 100 % santvaros ploto;
  • Pagal susitarimą su NASA KSA gali naudoti 2,3% bet kokių ne rusiškų komponentų;
  • Įgulos darbo laikas, saulės energija, naudojimasis pagalbinėmis paslaugomis (pakrovimas/iškrovimas, ryšių paslaugos) - NASA 76,6%, JAXA 12,8%, ESA 8,3% ir CSA 2,3%.

Teisiniai kuriozai

Iki pirmojo kosminio turisto skrydžio nebuvo jokios reguliavimo sistemos, reglamentuojančios privačius kosminius skrydžius. Tačiau po Denniso Tito skrydžio projekte dalyvaujančios šalys sukūrė „Principus“, apibrėžiančius tokią sąvoką kaip „kosminis turistas“, ir visus reikalingus klausimus, susijusius su jo dalyvavimu lankomoje ekspedicijoje. Visų pirma, toks skrydis įmanomas tik esant specifiniams medicininiams rodikliams, psichologiniam tinkamumui, kalbos mokymui ir finansiniam įnašui.

Tokioje pat situacijoje atsidūrė ir pirmųjų kosminių vestuvių dalyviai 2003 metais, nes tokios procedūros taip pat nereglamentavo jokie įstatymai.

2000 m. respublikonų dauguma JAV Kongrese priėmė įstatyminį aktą dėl raketų ir branduolinių technologijų neplatinimo Irane, pagal kurį, visų pirma, Jungtinės Valstijos negalėjo pirkti iš Rusijos įrangos ir laivų, reikalingų statyti ISS. Tačiau po Kolumbijos katastrofos, kai projekto likimas priklausė nuo Rusijos „Sojuz“ ir „Progress“, 2005 m. spalio 26 d. Kongresas buvo priverstas priimti šio įstatymo projekto pataisas, panaikindamas visus „bet kokius protokolus, susitarimus, supratimo memorandumus“ apribojimus. arba sutartys“ , iki 2012 m. sausio 1 d.

Išlaidos

TKS statybos ir eksploatavimo išlaidos pasirodė daug didesnės nei planuota iš pradžių. 2005 m. ESA apskaičiavo, kad nuo ISS projekto pradžios devintojo dešimtmečio pabaigoje iki numatomo projekto užbaigimo 2010 m. buvo išleista apie 100 milijardų eurų (157 mlrd. Tačiau šiandien stoties eksploatavimo pabaiga planuojama ne anksčiau kaip 2024 m., dėl JAV, negalinčios atjungti savo segmento ir toliau skristi, prašymo, visų šalių bendros sąnaudos skaičiuojamos 2024 m. didesnę sumą.

Labai sunku tiksliai įvertinti ISS kainą. Pavyzdžiui, neaišku, kaip turėtų būti skaičiuojamas Rusijos indėlis, nes „Roscosmos“ taiko žymiai mažesnius dolerio kursus nei kiti partneriai.

NASA

Vertinant projektą kaip visumą, didžiausios NASA išlaidos yra skrydžių palaikymo veiklos kompleksas ir TKS valdymo kaštai. Kitaip tariant, dabartinės veiklos sąnaudos sudaro daug didesnę išleistų lėšų dalį nei išlaidos moduliams ir kitai stoties įrangai, mokymo įguloms ir pristatymo laivams statyti.

NASA išlaidos TKS, neįskaitant „Shuttle“ išlaidų, 1994–2005 m. buvo 25,6 mlrd. 2005 ir 2006 metais sudarė apie 1,8 mlrd. Tikimasi, kad metinės išlaidos padidės ir iki 2010 m. pasieks 2,3 mlrd. Tuomet iki projekto pabaigos 2016 metais joks didinimas nenumatytas, tik infliaciniai koregavimai.

Biudžeto lėšų paskirstymas

Išsamų NASA išlaidų sąrašą galima įvertinti, pavyzdžiui, iš kosmoso agentūros paskelbto dokumento, kuriame parodyta, kaip buvo paskirstyti 1,8 mlrd.

  • Naujos įrangos tyrimai ir kūrimas- 70 milijonų dolerių. Ši suma visų pirma buvo skirta navigacijos sistemoms, informacinei pagalbai ir aplinkos taršą mažinančioms technologijoms kurti.
  • Skrydžio palaikymas- 800 milijonų dolerių. Į šią sumą įeina: vienam laivui – 125 mln. papildomi 150 milijonų dolerių buvo išleista patiems skrydžiams, avionikai ir įgulos bei laivo sąveikos sistemoms; likusieji 250 milijonų dolerių atiteko bendrajam TKS valdymui.
  • Laivų paleidimas ir ekspedicijų vykdymas– 125 mln. USD operacijų prieš paleidimą kosmodrome; 25 milijonai dolerių sveikatos apsaugai; 300 milijonų dolerių išleista ekspedicijos valdymui;
  • Skrydžio programa- 350 milijonų dolerių išleista skrydžio programai kurti, antžeminei įrangai ir programinei įrangai prižiūrėti, kad būtų užtikrinta ir nepertraukiama prieiga prie TKS.
  • Kroviniai ir įgulos– 140 milijonų dolerių išleista eksploatacinėms medžiagoms įsigyti, taip pat galimybei pristatyti krovinius ir įgulas Rusijos Progress ir Sojuz lėktuvuose.

Shuttle kaina kaip ISS išlaidų dalis

Iš dešimties suplanuotų skrydžių, likusių iki 2010 m., tik vienas STS-125 skrido ne į stotį, o į Hablo teleskopą.

Kaip minėta pirmiau, NASA į pagrindinį stoties išlaidų straipsnį neįtraukia „Shuttle“ programos išlaidų, nes ji ją laiko atskiru projektu, nepriklausomu nuo TKS. Tačiau nuo 1998 metų gruodžio iki 2008 metų gegužės tik 5 iš 31 šaudyklinio skrydžio nebuvo susiję su TKS, o iš likusių vienuolikos iki 2011 metų planuotų skrydžių tik vienas STS-125 skrido ne į stotį, o į Hablo teleskopą.

Apytikslės „Shuttle“ programos išlaidos krovinių ir astronautų įguloms pristatyti į TKS buvo:

  • Neskaitant pirmojo skrydžio 1998 m., nuo 1999 iki 2005 m. išlaidos siekė 24 mlrd. Iš jų 20 % (5 mlrd. USD) nebuvo susiję su TKS. Iš viso – 19 milijardų dolerių.
  • 1996–2006 metais skrydžiams pagal „Shuttle“ programą buvo planuota išleisti 20,5 mlrd. Jei iš šios sumos atimtume skrydį į Hablą, gautume tuos pačius 19 milijardų dolerių.

Tai reiškia, kad NASA bendros išlaidos skrydžiams į TKS per visą laikotarpį bus maždaug 38 mlrd.

Iš viso

Atsižvelgdami į NASA planus laikotarpiui nuo 2011 iki 2017 m., kaip pirmą apytikslį, galime gauti vidutines metines išlaidas 2,5 milijardo JAV dolerių, kurios vėlesniam laikotarpiui nuo 2006 iki 2017 m. bus 27,5 milijardo dolerių. Žinodami TKS išlaidas nuo 1994 iki 2005 metų (25,6 mlrd. USD) ir pridėdami šiuos skaičius, gauname galutinį oficialų rezultatą – 53 mlrd.

Taip pat reikėtų pažymėti, kad į šį skaičių neįskaičiuotos didelės kosminės stoties „Freedom“ projektavimo išlaidos devintajame dešimtmetyje ir dešimtojo dešimtmečio pradžioje bei dalyvavimas bendroje programoje su Rusija, siekiant panaudoti stotį „Mir“ 1990-aisiais. Šių dviejų projektų plėtra buvo ne kartą panaudota statant TKS. Įvertinus šią aplinkybę ir atsižvelgiant į situaciją su „Shuttles“, galima kalbėti apie daugiau nei dvigubą išlaidų sumos padidėjimą, palyginti su oficialia – vien JAV daugiau nei 100 mlrd.

ESA

ESA apskaičiavo, kad jos indėlis per 15 projekto gyvavimo metų sieks 9 mlrd. „Columbus“ modulio kaina viršija 1,4 milijardo eurų (apie 2,1 milijardo JAV dolerių), įskaitant antžeminio valdymo ir valdymo sistemų išlaidas. Bendra keturračio kūrimo kaina yra maždaug 1,35 milijardo eurų, o kiekvienas Ariane 5 paleidimas kainuoja apie 150 milijonų eurų.

JAXA

Japoniško eksperimento modulio, pagrindinio JAXA įnašo į TKS, sukūrimas kainavo maždaug 325 milijardus jenų (apie 2,8 milijardo JAV dolerių).

2005 m. JAXA ISS programai skyrė maždaug 40 mlrd. jenų (350 mln. USD). Japoniško eksperimentinio modulio metinės eksploatacinės išlaidos yra 350-400 milijonų dolerių. Be to, JAXA įsipareigojo sukurti ir išleisti H-II transporto priemonę, kurios bendra plėtros kaina yra 1 mlrd. JAXA išlaidos per 24 dalyvavimo ISS programoje metus viršys 10 mlrd.

Roskosmosas

Nemaža dalis Rusijos kosmoso agentūros biudžeto išleidžiama TKS. Nuo 1998 metų buvo atlikta daugiau nei trys dešimtys erdvėlaivių „Sojuz“ ir „Progress“ skrydžių, kurie nuo 2003 metų tapo pagrindine krovinių ir įgulų pristatymo priemone. Tačiau klausimas, kiek Rusija išleidžia stočiai (JAV doleriais), nėra paprastas. Šiuo metu orbitoje esantys 2 moduliai yra programos Mir dariniai, todėl jų kūrimo kaštai yra daug mažesni nei kitų modulių, tačiau šiuo atveju, analogiškai amerikietiškoms programoms, atitinkamų stoties modulių kūrimo kaštai. taip pat reikėtų atsižvelgti. Pasaulis“. Be to, rublio ir dolerio kursas nepakankamai įvertina faktines „Roscosmos“ išlaidas.

Apytikslę informaciją apie Rusijos kosmoso agentūros išlaidas TKS galima gauti iš viso jos biudžeto, kuris 2005 m. siekė 25,156 milijardus rublių, 2006 m. - 31,806, 2007 m. - 32,985 ir 2008 m. - 37,044 milijardus rublių. Taigi stotis per metus kainuoja mažiau nei pusantro milijardo JAV dolerių.

CSA

Kanados kosmoso agentūra (CSA) yra ilgalaikė NASA partnerė, todėl Kanada TKS projekte dalyvauja nuo pat pradžių. Kanados indėlis į TKS yra mobilios priežiūros sistema, susidedanti iš trijų dalių: mobiliojo vežimėlio, kuris gali judėti išilgai stoties santvaros konstrukcijos, roboto rankos, pavadintos Canadarm2 (Canadarm2), kuris yra sumontuotas ant mobiliojo vežimėlio, ir specialaus manipuliatoriaus, vadinamo Dextre. . ). Apskaičiuota, kad per pastaruosius 20 metų CSA į stotį investavo 1,4 milijardo Kanados dolerių.

Kritika

Per visą astronautikos istoriją TKS yra brangiausias ir, ko gero, daugiausiai kritikos sulaukęs kosminis projektas. Kritiką galima laikyti konstruktyvia arba trumparegiška, galima su ja sutikti arba ginčytis, tačiau vienas dalykas lieka nepakitęs: stotis egzistuoja, savo egzistavimu įrodo tarptautinio bendradarbiavimo kosmose galimybę ir didina žmonijos patirtį skrydžiuose į kosmosą, išlaidaujant. tam skirti didžiuliai finansiniai ištekliai.

Kritika JAV

Amerikos pusės kritika daugiausia nukreipta į projekto kainą, kuri jau viršija 100 mlrd. Šiuos pinigus, anot kritikų, būtų galima geriau išleisti automatizuotiems (nepilotuojamiems) skrydžiams tyrinėti artimą kosmosą arba Žemėje vykdomiems moksliniams projektams. Reaguodami į kai kurias iš šių kritikų, žmonių skrydžio į kosmosą šalininkai teigia, kad TKS projekto kritika yra trumparegiška ir kad žmonių skrydžiai į kosmosą ir kosmoso tyrinėjimų grąža siekia milijardus dolerių. Jerome Schnee (anglų k.) Jeronimas Schnee) apskaičiavo, kad papildomų pajamų, susijusių su kosmoso tyrinėjimu, netiesioginė ekonominė sudedamoji dalis yra daug kartų didesnė nei pradinės vyriausybės investicijos.

Tačiau Amerikos mokslininkų federacijos pareiškime teigiama, kad NASA pelno marža iš atskirų pajamų iš tikrųjų yra labai maža, išskyrus aeronautikos pokyčius, kurie pagerina orlaivių pardavimą.

Kritikai taip pat teigia, kad NASA prie savo laimėjimų dažnai priskiria trečiųjų šalių kompanijų, kurių idėjomis ir patobulinimais NASA galėjo pasinaudoti, tačiau turėjo kitų, nuo astronautikos nepriklausančių, prielaidų. Kritikų teigimu, tikrai naudinga ir pelninga yra nepilotuojami navigacijos, meteorologiniai ir kariniai palydovai. NASA plačiai skelbia papildomas pajamas iš TKS statybos ir joje atliekamų darbų, o oficialus NASA išlaidų sąrašas yra daug trumpesnis ir paslaptingesnis.

Mokslinių aspektų kritika

Pasak profesoriaus Roberto Parko Roberto parkas), dauguma planuojamų mokslinių tyrimų nėra pirminės reikšmės. Jis pažymi, kad daugumos mokslinių tyrimų kosminėje laboratorijoje tikslas yra juos atlikti mikrogravitacijos sąlygomis, o tai dirbtinio nesvarumo sąlygomis (specialioje plokštumoje, skrendančiame paraboline trajektorija) galima padaryti daug pigiau. sumažintos gravitacijos lėktuvai).

Į TKS statybos planus buvo įtraukti du aukštųjų technologijų komponentai – magnetinis alfa spektrometras ir centrifugos modulis. Centrifugos patalpų modulis) . Pirmoji stotyje dirba nuo 2011 metų gegužės mėnesio. Antrojo kūrimo atsisakyta 2005 m., pakoregavus stoties statybos užbaigimo planus. Labai specializuotus eksperimentus, atliekamus TKS, riboja tinkamos įrangos trūkumas. Pavyzdžiui, 2007 metais buvo atlikti tyrimai apie skrydžio į kosmosą veiksnių įtaką žmogaus organizmui, paliečiant tokius aspektus kaip inkstų akmenligė, cirkadinis ritmas (biologinių procesų cikliškumas žmogaus organizme), kosminių procesų įtaka. spinduliuotę žmogaus nervų sistemą. Kritikai teigia, kad šie tyrimai turi mažai praktinės vertės, nes šiandienos artimo kosmoso tyrinėjimų tikrovė yra nepilotuojami robotiniai laivai.

Techninių aspektų kritika

Amerikiečių žurnalistas Jeffas Faustas Džefas Foustas) teigė, kad už Priežiūra TKS reikia per daug brangių ir pavojingų kosminių žygių. Ramiojo vandenyno astronomijos draugija Ramiojo vandenyno astronomijos draugija) TKS projektavimo pradžioje buvo atkreiptas dėmesys į per didelį stoties orbitos polinkį. Nors tai atpigina Rusijos paleidimą, tai nepelninga Amerikos pusei. Nuolaida, kurią NASA padarė Rusijos Federacijai dėl Baikonūro geografinės padėties, galiausiai gali padidinti bendras TKS statybos išlaidas.

Apskritai diskusijos Amerikos visuomenėje susiveda į diskusiją apie TKS įgyvendinamumą astronautikos aspektu platesne prasme. Kai kurie šalininkai teigia, kad, be savo mokslinės vertės, tai yra svarbus tarptautinio bendradarbiavimo pavyzdys. Kiti teigia, kad TKS, dedant reikiamas pastangas ir tobulinant, galėtų padaryti skrydžius ekonomiškesnius. Vienaip ar kitaip, pagrindinė teiginių, atsakančių į kritiką, esmė yra ta, kad iš TKS sunku tikėtis rimtos finansinės grąžos, greičiau jos pagrindinis tikslas – tapti pasaulinės kosminių skrydžių galimybių plėtros dalimi.

Kritika Rusijoje

Rusijoje TKS projekto kritika daugiausiai nukreipta į neaktyvią Federalinės kosmoso agentūros (FSA) vadovybės poziciją ginant Rusijos interesus, palyginti su Amerikos puse, kuri visada griežtai stebi savo nacionalinių prioritetų laikymąsi.

Pavyzdžiui, žurnalistai užduoda klausimus, kodėl Rusija neturi savo orbitinės stoties projekto ir kodėl išleidžiami pinigai JAV priklausančiam projektui, o šios lėšos galėtų būti skirtos visiškai rusiškai plėtrai. „RSC Energia“ vadovo Vitalijaus Lopotos teigimu, to priežastis – sutartiniai įsipareigojimai ir finansavimo trūkumas.

Vienu metu stotis Mir JAV tapo TKS statybų ir tyrimų patirties šaltiniu, o po Kolumbijos avarijos Rusijos pusė, veikdama pagal partnerystės susitarimą su NASA ir pristačiusi įrangą bei kosmonautus. stoties, beveik vienas išsaugojo projektą. Dėl šių aplinkybių FKA buvo pareikšti kritiški pareiškimai dėl Rusijos vaidmens projekte neįvertinimo. Pavyzdžiui, kosmonautė Svetlana Savitskaja pažymėjo, kad Rusijos mokslinis ir techninis indėlis į projektą yra neįvertinamas, o partnerystės sutartis su NASA neatitinka nacionalinių interesų finansiškai. Tačiau verta atsižvelgti į tai, kad TKS statybos pradžioje už rusišką stoties segmentą mokėjo JAV, suteikdamos paskolas, kurių grąžinimas numatytas tik statybų pabaigoje.

Kalbėdami apie mokslinį ir techninį komponentą, žurnalistai atkreipia dėmesį į nedidelį stotyje atliekamų naujų mokslinių eksperimentų skaičių, paaiškindami tai tuo, kad Rusija dėl lėšų stokos negali pagaminti ir tiekti stočiai reikiamos įrangos. Vitalijaus Lopotos teigimu, situacija pasikeis, kai vienu metu astronautų buvimas TKS padidės iki 6 žmonių. Be to, kyla klausimų dėl saugumo priemonių nenugalimos jėgos situacijose, susijusiose su galimu stoties kontrolės praradimu. Taigi, pasak kosmonauto Valerijaus Ryumino, kyla pavojus, kad jei TKS taps nevaldoma, ji negalės būti užtvindyta kaip Mir stotis.

Tarptautinis bendradarbiavimas, kuris yra vienas pagrindinių stoties pardavimo taškų, taip pat yra prieštaringas, anot kritikų. Kaip žinoma, pagal tarptautinės sutarties sąlygas šalys neprivalo dalytis savo mokslo pasiekimais stotyje. 2006–2007 metais kosmoso sektoriuje tarp Rusijos ir JAV nebuvo jokių naujų didelių iniciatyvų ar didelių projektų. Be to, daugelis mano, kad šalis, kuri į savo projektą investuoja 75% lėšų, vargu ar norės turėti visavertį partnerį, kuris taip pat yra pagrindinis jos konkurentas kovoje dėl lyderio pozicijų kosmose.

Taip pat kritikuojama, kad daug lėšų buvo skirta pilotuojamoms programoms, o nemažai palydovų kūrimo programų žlugo. 2003 m., duodamas interviu „Izvestija“, Jurijus Koptevas pareiškė, kad dėl TKS kosmoso mokslas vėl liko Žemėje.

2014-2015 metais Rusijos kosmoso pramonės ekspertai susidarė nuomonę, kad praktinė orbitinių stočių nauda jau išnaudota – per pastaruosius dešimtmečius buvo atlikti visi praktiškai svarbūs tyrimai ir atradimai:

Orbitinių stočių era, prasidėjusi 1971 m., bus praeitis. Ekspertai nemato jokių praktinių galimybių nei išlaikyti TKS po 2020 m., nei sukurti alternatyvią panašaus funkcionalumo stotį: „Mokslinė ir praktinė grąža iš Rusijos TKS segmento yra žymiai mažesnė nei iš Salyut-7 ir Mir orbitos. kompleksai“. Mokslo organizacijos nėra suinteresuotos kartoti tai, kas jau padaryta.

Žurnalas ekspertas 2015 m

Pristatymo laivai

Pilotuojamų ekspedicijų į TKS įgulos pristatomos į stotį Sojuzo TPK „trumpu“ šešių valandų grafiku. Iki 2013 metų kovo visos ekspedicijos į TKS skrisdavo pagal dviejų dienų tvarkaraštį. Iki 2011 m. liepos mėn. krovinių pristatymas, stoties elementų montavimas, įgulos rotacija, be „Sojuz TPK“, buvo vykdomas pagal „Space Shuttle“ programą, kol programa buvo baigta.

Visų pilotuojamų ir transporto erdvėlaivių skrydžių į TKS lentelė:

Laivas Tipas agentūra/šalis Pirmas skrydis Paskutinis skrydis Iš viso skrydžių

TKS yra MIR stoties, didžiausio ir brangiausio objekto žmonijos istorijoje, įpėdinis.

Kokio dydžio orbitinė stotis? Kiek tai kainuoja? Kaip gyvena ir dirba astronautai?

Apie tai kalbėsime šiame straipsnyje.

Kas yra TKS ir kam ji priklauso?

Tarptautinė kosminė stotis (MKS) yra orbitinė stotis, naudojama kaip daugiafunkcinis kosminis objektas.

Tai mokslo projektas, kuriame dalyvauja 14 šalių:

  • Rusijos Federacija;
  • JAV;
  • Prancūzija;
  • Vokietija;
  • Belgija;
  • Japonija;
  • Kanada;
  • Švedija;
  • Ispanija;
  • Nyderlandai;
  • Šveicarija;
  • Danija;
  • Norvegija;
  • Italija.

1998 metais pradėta kurti TKS. Tada buvo paleistas pirmasis rusiškos „Proton-K“ raketos modulis. Vėliau kitos dalyvaujančios šalys į stotį pradėjo tiekti kitus modulius.

Pastaba: Anglų kalba TKS parašyta kaip ISS (iššifruojama: Tarptautinė kosminė stotis).

Yra žmonių, kurie įsitikinę, kad TKS neegzistuoja, ir viskas skrydžiai į kosmosą nufilmuotas Žemėje. Tačiau pilotuojamos stoties tikrovė buvo įrodyta, o apgaulės teoriją mokslininkai visiškai paneigė.

Tarptautinės kosminės stoties struktūra ir matmenys

TKS yra didžiulė laboratorija, skirta mūsų planetai tirti. Tuo pačiu metu stotyje gyvena joje dirbantys astronautai.

Stotis yra 109 metrų ilgio, 73,15 metro pločio ir 27,4 metro aukščio. Bendras svoris ISS – 417 289 kg.

Kiek kainuoja orbitinė stotis?

Apskaičiuota, kad įrenginio kaina siekia 150 mlrd. Tai pats brangiausias įvykis žmonijos istorijoje.

TKS orbitinis aukštis ir skrydžio greitis

Vidutinis aukštis, kuriame yra stotis, yra 384,7 km.

Greitis – 27 700 km/val. Stotis visą revoliuciją aplink Žemę užbaigia per 92 minutes.

Laikas stotyje ir įgulos darbo grafikas

Stotis veikia Londono laiku, astronautų darbo diena prasideda 6 val. Šiuo metu kiekvienas ekipažas užmezga ryšį su savo šalimi.

Įgulos ataskaitas galima klausytis internete. Darbo diena baigiasi 19:00 Londono laiku .

Skrydžio trajektorija

Stotis juda aplink planetą tam tikra trajektorija. Yra specialus žemėlapis, kuris parodo, kurią maršruto dalį tam tikru metu plaukia laivas. Šiame žemėlapyje taip pat rodomi skirtingi parametrai – laikas, greitis, aukštis, platuma ir ilguma.

Kodėl TKS nenukrenta į Žemę? Tiesą sakant, objektas krenta į Žemę, bet praleidžia, nes nuolat juda tam tikru greičiu. Trajektoriją reikia reguliariai pakelti. Kai tik stotis praranda dalį savo greičio, ji vis labiau artėja prie Žemės.

Kokia temperatūra yra už TKS?

Temperatūra nuolat kinta ir tiesiogiai priklauso nuo šviesos ir šešėlių sąlygų. Pavėsyje laikosi apie -150 laipsnių Celsijaus.

Jei stotis yra veikiama tiesioginių saulės spindulių, tada lauke temperatūra yra +150 laipsnių Celsijaus.

Temperatūra stoties viduje

Nepaisant svyravimų už borto, vidutinė temperatūra laivo viduje yra 23-27 laipsniai šilumos ir visiškai tinkamas gyventi žmonėms.

Astronautai darbo dienos pabaigoje miega, valgo, sportuoja, dirba ir ilsisi – sąlygos būti TKS yra artimos patogiausioms.

Kuo astronautai kvėpuoja TKS?

Pagrindinė užduotis kuriant erdvėlaivį buvo sudaryti astronautams sąlygas, reikalingas tinkamam kvėpavimui palaikyti. Deguonis gaunamas iš vandens.

Speciali sistema, vadinama „Air“, paima anglies dioksidą ir išmeta jį už borto. Deguonis papildomas vandens elektrolizės būdu. Stotyje taip pat yra deguonies balionai.

Kiek laiko trunka skrydis iš kosmodromo į TKS?

Skrydis trunka kiek daugiau nei 2 dienas. Taip pat yra trumpa 6 valandų schema (bet ji netinka krovininiams laivams).

Atstumas nuo Žemės iki TKS svyruoja nuo 413 iki 429 kilometrų.

Gyvenimas TKS – ką veikia astronautai

Kiekviena įgula atlieka mokslinius eksperimentus, kuriuos užsakė savo šalies tyrimų institutas.

Yra keletas tokių tyrimų tipų:

  • švietimo;
  • techninis;
  • aplinkosauga;
  • biotechnologijos;
  • medicinos ir biologijos;
  • gyvenimo ir darbo sąlygų orbitoje tyrimas;
  • kosmoso ir Žemės planetos tyrinėjimas;
  • fizikiniai ir cheminiai procesai erdvėje;
  • studijuoti saulės sistema ir kiti.

Kas dabar yra TKS?

Šiuo metu orbitoje toliau budi šie darbuotojai: Rusijos kosmonautas Sergejus Prokopjevas, Serena Auñon-kanclerė iš JAV ir Aleksandras Gerstas iš Vokietijos.

Kitas paleidimas iš Baikonuro kosmodromo buvo planuotas spalio 11 d., tačiau dėl nelaimės skrydis neįvyko. Šiuo metu dar nėra žinoma, kurie astronautai ir kada skris į TKS.

Kaip susisiekti su ISS

Tiesą sakant, kiekvienas turi galimybę susisiekti su tarptautine kosmine stotimi. Norėdami tai padaryti, jums reikės specialios įrangos:

  • siųstuvas-imtuvas;
  • antena (145 MHz dažnių diapazonui);
  • sukamasis įtaisas;
  • kompiuteris, kuris apskaičiuos TKS orbitą.

Šiandien kiekvienas astronautas turi didelės spartos internetą. Dauguma specialistų bendrauja su draugais ir šeima per „Skype“, palaiko asmeninius puslapius „Instagram“, „Twitter“ ir „Facebook“, kur skelbia nuostabiai gražias mūsų žaliosios planetos nuotraukas.

Kiek kartų TKS apskrieja Žemę per dieną?

Laivo sukimosi aplink mūsų planetą greitis yra 16 kartų per dieną. Tai reiškia, kad per vieną dieną astronautai saulėtekį gali pamatyti 16 kartų, o saulėlydį – 16 kartų.

TKS sukimosi greitis yra 27 700 km/val. Toks greitis neleidžia stočiai nukristi į Žemę.

Kur šiuo metu yra TKS ir kaip ją pamatyti iš Žemės

Daugelį domina klausimas: ar tikrai galima pamatyti laivą plika akimi? Dėl nuolatinės orbitos ir didelis dydis, kiekvienas gali pamatyti TKS.

Danguje laivą galite pamatyti ir dieną, ir naktį, tačiau rekomenduojama tai daryti naktį.

Norėdami sužinoti skrydžio laiką virš savo miesto, turite užsiprenumeruoti NASA naujienlaiškį. Specialios Twisst paslaugos dėka galite stebėti stoties judėjimą realiu laiku.

Išvada

Jei danguje matote ryškų objektą, tai ne visada meteoritas, kometa ar žvaigždė. Žinodami, kaip plika akimi atskirti TKS, dangaus kūne tikrai nesuklysite.

Daugiau informacijos apie TKS naujienas ir objekto judėjimą galite sužinoti oficialioje svetainėje: http://mks-online.ru.

Tarptautinė kosminė stotis (TKS), sovietinės Mir stoties įpėdinė, švenčia 10 metų jubiliejų. Sutartį dėl TKS sukūrimo 1998 metų sausio 29 dieną Vašingtone pasirašė Kanados, Europos kosmoso agentūros (ESA) valstybių narių vyriausybių, Japonijos, Rusijos ir JAV atstovai.

Darbas tarptautinėje kosminėje stotyje prasidėjo 1993 m.

1993 m. kovo 15 d. RKA generalinis direktorius Yu.N. Koptevas ir generalinis NPO ENERGY dizaineris Yu.P. Semenovas kreipėsi į NASA vadovą D. Goldiną su pasiūlymu sukurti Tarptautinę kosminę stotį.

1993 m. rugsėjo 2 d. Rusijos Federacijos Vyriausybės pirmininkas V. S. Černomyrdinas ir JAV viceprezidentas A. Gore'as pasirašė „Bendrąjį pareiškimą dėl bendradarbiavimo kosmose“, kuriame taip pat buvo numatyta sukurti bendrą stotį. Ją plėtodamos RSA ir NASA sukūrė ir 1993 m. lapkričio 1 d. pasirašė „Išsamų Tarptautinės kosminės stoties darbo planą“. Tai leido 1994 m. birželį pasirašyti NASA ir RSA sutartį „Dėl tiekimo ir paslaugų Mir stočiai ir Tarptautinei kosminei stočiai“.

Atsižvelgiant į tam tikrus pokyčius bendruose Rusijos ir Amerikos partijų susitikimuose 1994 m., TKS buvo tokia struktūra ir darbo organizavimas:

Stoties kūrime, be Rusijos ir JAV, dalyvauja Kanada, Japonija ir Europos bendradarbiavimo šalys;

Stotis bus sudaryta iš 2 integruotų segmentų (rusiško ir amerikietiško) ir bus palaipsniui surenkama į orbitą iš atskirų modulių.

TKS statyba žemoje orbitoje prasidėjo 1998 m. lapkričio 20 d., kai buvo paleistas Zarya funkcinis krovinių blokas.
Jau 1998 m. gruodžio 7 d. prie jo buvo prijungtas amerikietiškas jungiamasis modulis „Unity“, kurį į orbitą atgabeno šaulys „Endeavour“.

Gruodžio 10 dieną pirmą kartą buvo atidaryti liukai į naująją stotį. Pirmieji į jį įžengė rusų kosmonautas Sergejus Krikalevas ir amerikiečių astronautas Robertas Kabana.

2000 m. liepos 26 d. į TKS buvo pristatytas „Zvezda“ aptarnavimo modulis, kuris stoties dislokavimo etape tapo jos baziniu padaliniu, pagrindine įgulos gyvenimo ir darbo vieta.

2000 m. lapkritį į TKS atvyko pirmosios ilgalaikės ekspedicijos įgula: Williamas Shepherdas (vadas), Jurijus Gidzenko (pilotas) ir Sergejus Krikalevas (skrydžio inžinierius). Nuo tada stotis buvo nuolat apgyvendinta.

Stoties dislokavimo metu TKS aplankė 15 pagrindinių ekspedicijų ir 13 lankomų ekspedicijų. Šiuo metu stotyje yra 16-osios pagrindinės ekspedicijos įgula – pirmoji amerikietė TKS vadė Peggy Whitson, TKS skrydžių inžinieriai rusas Jurijus Malenčenko ir amerikietis Danielis Tani.

Pagal atskirą susitarimą su ESA į TKS buvo atlikti šeši Europos astronautų skrydžiai: Claudie Haignere (Prancūzija) - 2001 m., Roberto Vittori (Italija) - 2002 ir 2005 m., Frank de Vinna (Belgija) - 2002 m. , Pedro Duque (Ispanija) – 2003 m., Andre Kuipersas (Nyderlandai) – 2004 m.

Naujas puslapis komerciniame kosmoso panaudojime buvo atvertas po pirmųjų kosminių turistų skrydžių į Rusijos TKS segmentą – amerikiečio Deniso Tito (2001 m.) ir pietų afrikiečio Marko Shuttlewortho (2002 m.). Pirmą kartą stotyje apsilankė neprofesionalūs kosmonautai.

TKS sukūrimas yra didžiausias projektas, kurį kartu įgyvendino Roscosmos, NASA, ESA, Kanados kosmoso agentūra ir Japonijos kosmoso tyrimų agentūra (JAXA).

Rusijos pusės vardu projekte dalyvauja RSC Energia ir Chruničevo centras. Kosmonautų mokymo centras (CPC), pavadintas Gagarino vardu, TsNIIMASH, Rusijos mokslų akademijos Medicinos ir biologinių problemų institutas (IMBP), UAB „NPP Zvezda“ ir kitos pirmaujančios Rusijos Federacijos raketų ir kosmoso pramonės organizacijos.

Medžiagą parengė internetiniai www.rian.ru redaktoriai, remdamiesi informacija iš atvirų šaltinių