İlerleme nasıl çözülür? Aritmetik ilerleme. Örneklerle ayrıntılı teori (2019)

cephe

Örneğin \(2\); dizisi \(5\); \(8\); \(onbir\); \(14\)... aritmetik bir ilerlemedir çünkü her biri sonraki öğeöncekinden üç kat farklıdır (öncekiden üç eklenerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) aynı zamanda negatif sayı. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğenin numarasına eşit bir sayısal indeksle gösterilirler.

Örneğin, \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) aritmetik ilerlemesi \(a_1=2\); \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme\(b_1=7; d=4\) koşulları tarafından verilmiştir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk olumsuz) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme aşağıdaki koşullarla tanımlanır: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili birçok problem, asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen "kafa kafaya" karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez mi eklememiz gerekiyor? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları ilerlemenin n'inci terimi formülü ve \(n\) ilk terimin toplamı formülüdür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8.2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, sayısına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplamdaki öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık hemen hemen her aritmetik ilerleme problemini çözmek için ihtiyacınız olan tüm bilgilere sahipsiniz. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemedeki tüm negatif terimlerin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyorum... ve burada küçük bir nüans ortaya çıkıyor - \(n\)'i bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Sıfırdan büyük olması için \(a_n\)'a ihtiyacımız var. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve ilk pozitif elemanın \(66\) sayısına sahip olacağı ortaya çıktı. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)th'den \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için dördünü önceki öğeye ekleriz). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha vardır. Ancak bunları kolayca bulabilirsiniz.

Cebir okurken ortaokul(9. sınıf) biri önemli konular geometrik ve aritmetik ilerlemeleri içeren sayı dizilerinin incelenmesidir. Bu yazıda aritmetik ilerlemeye ve çözümlü örneklere bakacağız.

Aritmetik ilerleme nedir?

Bunu anlamak için hem söz konusu ilerlemeyi tanımlamak hem de daha sonra problemlerin çözümünde kullanılacak temel formülleri sağlamak gerekir.

Bazı cebirsel ilerlemelerde 1. terimin 6'ya, 7. terimin ise 18'e eşit olduğu bilinmektedir. Farkı bulup bu diziyi 7. terime geri döndürmek gerekir.

Bilinmeyen terimi belirlemek için şu formülü kullanalım: a n = (n - 1) * d + a 1 . Koşuldan bilinen verileri, yani a 1 ve a 7 sayılarını yerine koyalım: 18 = 6 + 6 * d. Bu ifadeden farkı kolayca hesaplayabilirsiniz: d = (18 - 6) /6 = 2. Böylece problemin ilk kısmını cevaplamış olduk.

Diziyi 7. terime geri döndürmek için tanımı kullanmalısınız. cebirsel ilerleme yani a 2 = a 1 + d, a 3 = a 2 + d vb. Sonuç olarak tüm diziyi geri yükleriz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Örnek No. 3: bir ilerlemenin hazırlanması

Hadi bunu daha da karmaşık hale getirelim daha güçlü durum görevler. Şimdi aritmetik ilerlemenin nasıl bulunacağı sorusunu cevaplamamız gerekiyor. Şu örneği verebiliriz: İki sayı veriliyor örneğin - 4 ve 5. Bunların arasına üç terim daha yerleştirilecek şekilde cebirsel bir ilerleme oluşturmak gerekiyor.

Bu sorunu çözmeye başlamadan önce, verilen sayıların gelecekteki ilerlemede nasıl bir yer tutacağını anlamalısınız. Aralarında üç terim daha olacağı için a 1 = -4 ve a 5 = 5 olur. Bunu belirledikten sonra bir öncekine benzer probleme geçiyoruz. Yine formülü kullandığımız n'inci terim için şunu elde ederiz: a 5 = a 1 + 4 * d. Başlangıç: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Burada elde ettiğimiz şey farkın tam sayı değeri değil, rasyonel bir sayıdır, dolayısıyla cebirsel ilerlemenin formülleri aynı kalır.

Şimdi bulunan farkı 1'e ekleyelim ve ilerlemenin eksik terimlerini geri yükleyelim. Şunu elde ederiz: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, bunlar çakıştı Sorunun koşulları ile.

Örnek No. 4: ilerlemenin ilk dönemi

Çözümlü aritmetik ilerleme örnekleri vermeye devam edelim. Önceki problemlerin hepsinde cebirsel ilerlemenin ilk sayısı biliniyordu. Şimdi farklı türde bir problem düşünelim: a 15 = 50 ve a 43 = 37 olmak üzere iki sayı verilsin. Bu dizinin hangi sayıyla başladığını bulmak gerekiyor.

Şu ana kadar kullanılan formüller a 1 ve d'nin bilgisini varsaymaktadır. Problem ifadesinde bu sayılar hakkında hiçbir şey bilinmemektedir. Bununla birlikte, hakkında bilgi bulunan her terim için ifadeleri yazacağız: a 15 = a 1 + 14 * d ve a 43 = a 1 + 42 * d. 2 bilinmeyen miktarın (a 1 ve d) olduğu iki denklem aldık. Bu, problemin bir doğrusal denklem sisteminin çözümüne indirgendiği anlamına gelir.

Bu sistemi çözmenin en kolay yolu, her denklemde 1'i ifade etmek ve ardından elde edilen ifadeleri karşılaştırmaktır. Birinci denklem: a 1 = a 15 - 14 * d = 50 - 14 * d; ikinci denklem: a 1 = a 43 - 42 * d = 37 - 42 * d. Bu ifadeleri eşitleyerek şunu elde ederiz: 50 - 14 * d = 37 - 42 * d, dolayısıyla fark d = (37 - 50) / (42 - 14) = - 0,464 (yalnızca 3 ondalık basamak verilmiştir).

D'yi bildiğinize göre, 1 için yukarıdaki 2 ifadeden herhangi birini kullanabilirsiniz. Örneğin ilk olarak: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Elde edilen sonuçtan şüpheniz varsa kontrol edebilirsiniz, örneğin durumda belirtilen ilerlemenin 43. dönemini belirleyebilirsiniz. Şunu elde ederiz: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Küçük hata, hesaplamalarda binde birine yuvarlamanın kullanılmasından kaynaklanmaktadır.

Örnek No. 5: miktar

Şimdi bir aritmetik ilerlemenin toplamının çözümlerini içeren birkaç örneğe bakalım.

Aşağıdaki formun sayısal ilerlemesi verilsin: 1, 2, 3, 4, ...,. Bu sayıların 100'ünün toplamı nasıl hesaplanır?

Bilgisayar teknolojisinin gelişmesi sayesinde bu sorunu çözmek, yani kişinin Enter tuşuna bastığı anda bilgisayarın yapacağı tüm sayıları sırayla eklemek mümkündür. Ancak sunulan sayı serisinin cebirsel bir ilerleme olduğuna ve farkının 1'e eşit olduğuna dikkat ederseniz sorun zihinsel olarak çözülebilir. Toplam formülünü uygulayarak şunu elde ederiz: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Bu problemin “Gaussian” olarak adlandırılması ilginçtir çünkü 18. yüzyılın başında, henüz 10 yaşında olan ünlü Alman, bu problemi birkaç saniye içinde kafasında çözebilmiştir. Çocuk cebirsel ilerlemenin toplamının formülünü bilmiyordu ama dizinin sonundaki sayıları çiftler halinde toplarsanız her zaman aynı sonucu elde ettiğinizi fark etti: 1 + 100 = 2 + 99 = 3 + 98 = ... ve bu toplamlar tam olarak 50 (100/2) olacağından doğru cevabı almak için 50'yi 101 ile çarpmak yeterlidir.

Örnek No. 6: n'den m'ye kadar terimlerin toplamı

Bir tane daha tipik örnek aritmetik ilerlemenin toplamı şu şekildedir: 3, 7, 11, 15, ... gibi bir sayı dizisi verildiğinde, 8'den 14'e kadar olan terimlerin toplamının neye eşit olacağını bulmanız gerekir.

Sorun iki şekilde çözülür. Bunlardan ilki, 8'den 14'e kadar bilinmeyen terimleri bulmayı ve ardından bunları sırayla toplamayı içerir. Terim sayısı az olduğundan bu yöntem pek emek yoğun değildir. Ancak bu sorunun daha evrensel olan ikinci bir yöntemle çözülmesi önerilmektedir.

Buradaki fikir, n > m'nin tamsayı olduğu m ve n terimleri arasındaki cebirsel ilerlemenin toplamı için bir formül elde etmektir. Her iki durumda da toplam için iki ifade yazıyoruz:

  1. S m = m * (bir m + bir 1) / 2.
  2. S n = n * (bir n + bir 1) / 2.

n > m olduğundan 2. toplamın birinciyi içerdiği açıktır. Son sonuç, bu toplamlar arasındaki farkı alıp buna a m terimini eklersek (farkın alınması durumunda S n toplamından çıkarılır), probleme gerekli cevabı elde edeceğimiz anlamına gelir. Elimizde: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Bu ifadede a n ve a m formüllerini yerine koymak gerekir. O zaman şunu elde ederiz: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Ortaya çıkan formül biraz hantaldır, ancak S mn toplamı yalnızca n, m, a 1 ve d'ye bağlıdır. Bizim durumumuzda a 1 = 3, d = 4, n = 14, m = 8. Bu sayıları yerine koyarsak şunu elde ederiz: S mn = 301.

Yukarıdaki çözümlerden de görülebileceği gibi, tüm problemler n'inci terimin ifadesi ve ilk terimler kümesinin toplamı formülü bilgisine dayanmaktadır. Bu sorunlardan herhangi birini çözmeye başlamadan önce, durumu dikkatlice okumanız, neyi bulmanız gerektiğini net bir şekilde anlamanız ve ancak bundan sonra çözüme devam etmeniz önerilir.

Başka bir ipucu da basitlik için çabalamaktır, yani bir soruyu karmaşık matematiksel hesaplamalar kullanmadan cevaplayabiliyorsanız, o zaman tam da bunu yapmanız gerekir, çünkü bu durumda hata yapma olasılığı daha azdır. Örneğin, 6 numaralı çözümle aritmetik ilerleme örneğinde, S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m formülünde durabiliriz ve genel sorunu ayrı alt görevlere bölün (V bu durumdaönce a n ve a m) terimlerini bulun.

Elde edilen sonuç hakkında şüpheleriniz varsa, verilen bazı örneklerde yapıldığı gibi kontrol etmeniz önerilir. Aritmetik ilerlemeyi nasıl bulacağımızı öğrendik. Bunu anlarsanız, o kadar da zor değil.

Ders türü: yeni materyal öğrenme dersi.

Dersin amacı: Dizi türlerinden biri olarak aritmetik ilerleme kavramının oluşturulması, n'inci terim için formülün türetilmesi, aritmetik ilerlemenin üyelerinin karakteristik özelliklerine aşinalık. Problem çözme.

Dersin Hedefleri:

  • eğitici- aritmetik ilerleme kavramlarını tanıtmak; n'inci terim formülleri; Aritmetik ilerlemelerin üyelerinin sahip olduğu karakteristik özellik.
  • Gelişimsel- matematiksel kavramları karşılaştırma, benzerlikleri ve farklılıkları bulma, gözlemleme, kalıpları fark etme ve analoji yoluyla akıl yürütme yeteneğini geliştirmek; bazı gerçek durumların matematiksel modelini oluşturma ve yorumlama yeteneğini geliştirmek.
  • eğitici- Matematiğe ve uygulamalarına olan ilgiyi, aktiviteyi, iletişim yeteneğini ve kişinin görüşlerini mantıklı bir şekilde savunmasını teşvik etmek.

Ekipman: bilgisayar, multimedya projektörü, sunum (Ek 1)

Ders kitapları: Cebir 9, Yu.N. Makarychev, N.G. Mindyuk, K.N. Neshkov, S.B. Suvorov, S.A. Telyakovsky, Moskova Ders Kitapları OJSC, 2010

Ders planı:

  1. Zamanı organize etmek, Sorunun formülasyonu
  2. Bilginin güncellenmesi, sözlü çalışma
  3. Yeni materyal öğrenme
  4. Birincil konsolidasyon
  5. Dersi özetlemek
  6. Ev ödevi

Materyalin anlaşılırlığını ve çalışma kolaylığını artırmak için derse bir sunum eşlik eder. Ancak bu bir zorunluluk değildir ve aynı ders multimedya donanımı olmayan sınıflarda da işlenebilir. Bu amaçla gerekli veriler pano üzerinde veya tablo ve poster şeklinde hazırlanabilir.

Dersler sırasında

I. Organizasyon anı, problem bildirimi.

Selamlar.

Bugünkü dersin konusu aritmetik ilerlemedir. Bu dersimizde aritmetik ilerlemenin ne olduğunu öğreneceğiz. Genel form var, hadi bir aritmetik ilerlemeyi diğer dizilerden nasıl ayırt edeceğimizi öğrenelim ve aritmetik ilerlemelerin özelliklerini kullanan problemleri çözelim.

II. Bilginin güncellenmesi, sözlü çalışma.

() dizisi şu formülle verilir: =. Bu dizinin elemanı 144 ise hangi sayıya sahiptir? 225? 100? 48 sayısı bu dizinin üyeleri midir? 49 mu? 168?

() dizisi hakkında bilinmektedir ki, . Bir diziyi belirtmenin bu yöntemine ne ad verilir? Bu dizinin ilk dört terimini bulun.

() dizisi hakkında bilinmektedir. Bir diziyi belirtmenin bu yöntemine ne ad verilir? Varsa bulun?

III. Yeni materyal öğrenme.

İlerleme, her biri bir öncekine belirli bir bağımlılık içinde olan ve tüm ilerlemede ortak olan bir miktarlar dizisidir. Terim artık büyük ölçüde geçerliliğini yitirmiştir ve yalnızca "aritmetik ilerleme" ve "geometrik ilerleme" kombinasyonlarında bulunur.

“İlerleme” terimi Latince kökenlidir (“ileriye doğru ilerlemek” anlamına gelen ilerleme) ve Romalı yazar Boethius (6. yüzyıl) tarafından ortaya atılmıştır. Matematikte bu terim daha önce, bu dizinin bir yönde sonsuza kadar devam etmesine izin veren bir yasaya göre oluşturulan herhangi bir sayı dizisini ifade etmek için kullanılıyordu. Şu anda “ilerleme” terimi başlangıçtaki geniş anlamıyla kullanılmamaktadır. İki önemli ilerleme türü - aritmetik ve geometrik - adlarını korumuştur.

Sayı dizilerini göz önünde bulundurun:

  • 2, 6, 10, 14, 18, :.
  • 11, 8, 5, 2, -1, :.
  • 5, 5, 5, 5, 5, :.

Birinci dizinin üçüncü terimi nedir? Sonraki üye mi? Önceki üye mi? İkinci ve birinci terimler arasındaki fark nedir? Üçüncü ve ikinci üyeler mi? Dördüncü ve üçüncü?

Dizi aynı yasaya göre oluşturulmuşsa, birinci dizinin altıncı ve beşinci terimleri arasındaki farkın ne olacağını hesaplayın? Yedi ile altı arasında mı?

Her dizinin sonraki iki terimini adlandırın. Neden böyle düşünüyorsun?

(Öğrencilerin cevapları)

Ne ortak mülkiyet bu diziler var mı? Bu özelliği belirtin.

(Öğrencilerin cevapları)

Bu özelliğe sahip sayı dizilerine aritmetik ilerlemeler denir. Öğrencileri tanımı kendileri formüle etmeye davet edin.

Aritmetik ilerlemenin tanımı: Aritmetik ilerleme, ikinciden başlayarak her üyenin aynı sayıya eklenen bir öncekine eşit olduğu bir dizidir:

( - aritmetik ilerleme, eğer , bir sayı nerede.

Sayı D Dizinin bir sonraki üyesinin öncekinden ne kadar farklı olduğunu gösteren ilerleme farkı denir: .

Tekrar dizilere bakalım ve farklılıklardan bahsedelim. Her dizi hangi özelliklere sahiptir ve bunlar neyle ilişkilidir?

Aritmetik ilerlemedeki fark pozitifse ilerleme artıyor demektir: 2, 6, 10, 14, 18, :. (

Aritmetik ilerlemede fark negatifse ( , ilerleme azalıyor: 11, 8, 5, 2, -1, :. (

Fark sıfır () ise ve ilerlemenin tüm terimleri aynı sayıya eşitse diziye durağan denir: 5, 5, 5, 5, :.

Aritmetik ilerleme nasıl ayarlanır? Aşağıdaki problemi ele alalım.

Görev. Ayın 1'indeki depoda 50 ton kömür vardı. Bir ay boyunca her gün 3 ton kömür içeren bir kamyon depoya geliyor. Bu süre zarfında depodan kömür tüketilmezse, ayın 30'unda depoda ne kadar kömür olacaktır.

Her sayı için depodaki kömür miktarını yazarsak aritmetik ilerleme elde ederiz. Bu sorun nasıl çözülür? Gerçekten ayın her günü kömür miktarını hesaplamanız gerekiyor mu? Bir şekilde bu olmadan yapmak mümkün mü? Ayın 30'una kadar depoya 29 kömürlü arabanın geleceğini not ediyoruz. Böylece ayın 30'unda depoda 50 + 329 = 137 ton kömür olacaktır.

Böylece, bir aritmetik ilerlemenin yalnızca ilk terimini ve farkı bilerek, dizinin herhangi bir terimini bulabiliriz. Bu her zaman böyle midir?

Dizinin her bir teriminin ilk terime nasıl bağlı olduğunu ve aradaki farkı analiz edelim:

Böylece aritmetik ilerlemenin n'inci teriminin formülünü elde ettik.

Örnek 1. () dizisi aritmetik bir ilerlemedir. Eğer ve ise bulun.

Formülü n'inci terim için kullanalım ,

Cevap: 260.

Aşağıdaki sorunu göz önünde bulundurun:

Aritmetik ilerlemede çift terimler silindi: 3, :, 7, :, 13: Kayıp sayıları geri getirmek mümkün mü?

Öğrenciler muhtemelen ilk önce ilerlemenin farkını hesaplayacak ve ardından ilerlemenin bilinmeyen terimlerini bulacaklardır. Daha sonra onlardan dizinin bilinmeyen üyesi ile önceki ve sonraki arasındaki ilişkiyi bulmalarını isteyebilirsiniz.

Çözüm: Aritmetik ilerlemede komşu terimler arasındaki farkın sabit olduğu gerçeğinden yararlanalım. Dizinin istenen üyesi olsun. Daha sonra

.

Yorum. Aritmetik ilerlemenin bu özelliği onun karakteristik özelliğidir. Bu, herhangi bir aritmetik ilerlemede ikinciden başlayarak her terimin önceki ve sonrakilerin aritmetik ortalamasına eşit olduğu anlamına gelir ( . Ve tersine, ikinciden başlayarak her terimin önceki ve sonrakilerin aritmetik ortalamasına eşit olduğu herhangi bir dizi, aritmetik bir ilerlemedir.

IV. Birincil konsolidasyon.

  • No. 575 - sözlü olarak
  • No. 576 avd - sözlü olarak
  • No. 577b - doğrulamadan bağımsız olarak

Dizi (bir aritmetik ilerlemedir. Eğer ve

Formülü n'inci terim için kullanalım,

Cevap: -24.2.

Aritmetik ilerleme -8'in 23. ve n. terimlerini bulun; -6,5; :

Çözüm: Aritmetik ilerlemenin ilk terimi -8'dir. Aritmetik ilerlemenin farkını bulalım; bunu yapmak için dizinin sonraki teriminden bir öncekini çıkarmamız gerekir: -6,5-(-8) = 1,5.

Formülü n'inci terim için kullanalım.

Karar vermeye başlamadan önce aritmetik ilerleme problemleri Aritmetik ilerleme, sayı dizisinin özel bir durumu olduğundan, sayı dizisinin ne olduğuna bakalım.

Sayı dizisi, her bir öğesi kendine ait olan bir sayı kümesidir. seri numarası . Bu kümenin elemanlarına dizinin üyeleri denir. Bir sıra öğesinin seri numarası bir indeksle gösterilir:

Dizinin ilk elemanı;

Dizinin beşinci elemanı;

- dizinin “n'inci” elemanı, yani n numarasında "sırada duran" öğe.

Bir sıra elemanının değeri ile sıra numarası arasında bir ilişki vardır. Bu nedenle bir diziyi, argümanı dizinin elemanının sıra numarası olan bir fonksiyon olarak düşünebiliriz. Başka bir deyişle şunu söyleyebiliriz dizi doğal argümanın bir fonksiyonudur:

Sıra üç şekilde ayarlanabilir:

1 . Sıra bir tablo kullanılarak belirtilebilir. Bu durumda dizideki her bir üyenin değerini basitçe belirleriz.

Örneğin, Birisi kişisel zaman yönetimini üstlenmeye ve öncelikle hafta boyunca VKontakte'de ne kadar zaman geçirdiğini saymaya karar verdi. Zamanı tabloya kaydederek yedi unsurdan oluşan bir dizi alacaktır:

Tablonun ilk satırı haftanın gününün sayısını, ikinci satırı dakika cinsinden zamanı gösterir. Yani Pazartesi günü birisinin VKontakte'de 125 dakika, yani Perşembe günü - 248 dakika ve yani Cuma günü sadece 15 dakika geçirdiğini görüyoruz.

2 . Sıra, n'inci terim formülü kullanılarak belirtilebilir.

Bu durumda, bir dizi elemanının değerinin numarasına bağımlılığı doğrudan bir formül biçiminde ifade edilir.

Örneğin, eğer öyleyse

Belirli bir sayıya sahip bir dizi elemanının değerini bulmak için, eleman numarasını n'inci terimin formülüne koyarız.

Argümanın değeri biliniyorsa, bir fonksiyonun değerini bulmamız gerekiyorsa aynı şeyi yaparız. Argümanın değerini fonksiyon denkleminde değiştiririz:

Örneğin, , O

Bir dizide, rastgele bir sayısal fonksiyondan farklı olarak, argümanın yalnızca doğal bir sayı olabileceğini bir kez daha belirtmek isterim.

3 . Dizi, n dizi üye numarasının değerinin önceki üyelerin değerlerine bağımlılığını ifade eden bir formül kullanılarak belirtilebilir. Bu durumda dizi üyesinin değerini bulmak için sadece sayısını bilmemiz yeterli değildir. Dizinin ilk üyesini veya ilk birkaç üyesini belirtmemiz gerekiyor.

Örneğin, sırayı düşünün ,

Dizi üyelerinin değerlerini bulabiliriz sıraylaüçüncüsünden başlayarak:

Yani, dizinin n'inci teriminin değerini bulmak için her seferinde önceki iki terime dönüyoruz. Bir diziyi belirlemenin bu yöntemine denir tekrarlayan Latince kelimeden yinelenen- geri gelmek.

Artık aritmetik ilerlemeyi tanımlayabiliriz. Aritmetik ilerleme, sayı dizisinin basit bir özel durumudur.

Aritmetik ilerleme ikinciden başlayarak her bir üyesi aynı sayıya eklenen bir öncekine eşit olan sayısal bir dizidir.


Numara aranır aritmetik ilerleme farkı. Aritmetik ilerlemenin farkı pozitif, negatif veya sıfıra eşit olabilir.

If title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} artan.

Örneğin 2; 5; 8; on bir;...

Eğer ise, o zaman bir aritmetik ilerlemenin her terimi bir öncekinden daha küçüktür ve ilerleme şu şekildedir: azalan.

Örneğin 2; -1; -4; -7;...

Eğer ise ilerlemenin tüm terimleri aynı sayıya eşit olur ve ilerleme şu şekilde olur: sabit.

Örneğin, 2;2;2;2;...

Aritmetik ilerlemenin ana özelliği:

Şimdi resme bakalım.

Bunu görüyoruz

, ve aynı zamanda

Bu iki eşitliği topladığımızda şunu elde ederiz:

.

Eşitliğin her iki tarafını da 2'ye bölelim:

Yani aritmetik ilerlemenin her bir üyesi, ikinciden başlayarak, iki komşunun aritmetik ortalamasına eşittir:

Üstelik, o zamandan beri

, ve aynı zamanda

, O

, ve bu nedenle

title = "k>l" ile başlayan bir aritmetik ilerlemenin her terimi">, равен среднему арифметическому двух равноотстоящих. !}

Terimin formülü.

Aritmetik ilerlemenin terimlerinin aşağıdaki ilişkileri sağladığını görüyoruz:

ve sonunda

Aldık n'inci terimin formülü.

ÖNEMLİ! Aritmetik ilerlemenin herhangi bir üyesi ve aracılığıyla ifade edilebilir. Aritmetik ilerlemenin ilk terimini ve farkını bilerek, terimlerinden herhangi birini bulabilirsiniz.

Bir aritmetik ilerlemenin n teriminin toplamı.

Keyfi bir aritmetik ilerlemede, uç noktalardan eşit uzaklıktaki terimlerin toplamları birbirine eşittir:

N terimli bir aritmetik ilerlemeyi düşünün. Bu ilerlemenin n teriminin toplamı eşit olsun.

İlerlemenin şartlarını önce artan sayı sırasına göre, sonra azalan sıraya göre düzenleyelim:

Çiftler halinde ekleyelim:

Her parantez içindeki toplam, çiftlerin sayısı n'dir.

Şunu elde ederiz:

Bu yüzden, Bir aritmetik ilerlemenin n teriminin toplamı aşağıdaki formüller kullanılarak bulunabilir:

Hadi düşünelim aritmetik ilerleme problemlerini çözme.

1 . Sıra, n'inci terimin formülüyle verilir: . Bu dizinin aritmetik bir ilerleme olduğunu kanıtlayın.

Dizinin bitişik iki terimi arasındaki farkın aynı sayıya eşit olduğunu kanıtlayalım.

Dizinin iki bitişik üyesi arasındaki farkın sayılarına bağlı olmadığını ve sabit olduğunu bulduk. Dolayısıyla tanımı gereği bu dizi aritmetik bir ilerlemedir.

2 . Aritmetik ilerleme verildiğinde -31; -27;...

a) İlerlemenin 31 terimini bulun.

b) 41 sayısının bu ilerlemeye dahil olup olmadığını belirleyiniz.

A)Şunu görüyoruz;

İlerlememizin n'inci döneminin formülünü yazalım.

Genel olarak

Bizim durumumuzda , Bu yüzden

Önemli notlar!
1. Formüller yerine gobbledygook'u görürseniz önbelleğinizi temizleyin. Tarayıcınızda bunu nasıl yapacağınız burada yazılmıştır:
2. Makaleyi okumaya başlamadan önce en çok gezginimize dikkat edin. faydalı kaynakİçin

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin önce, hangisinin ikinci olduğunu ve sonuncuya kadar böyle devam ettiğini söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki komşu sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizimiz var.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından tanıtıldı ve daha geniş anlamda sonsuz bir sayısal dizi olarak anlaşıldı. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya aritmetik ilerlemenin farkı denir ve gösterilir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
Dır-dir aritmetik ilerleme - b, c.
Değil aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani, açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini önceki değere sırayla eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - genel forma koyalım ve şunu elde edelim:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerleme özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Yani önceki ve ardışık değerleri bilinen bir ilerleme teriminin değerini bulmak için bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Geriye, efsaneye göre tüm zamanların en büyük matematikçilerinden biri olan "matematikçilerin kralı" Karl Gauss tarafından kolayca çıkarılabilen tek bir formül bulmak kalıyor...

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu problemi sordu: “Tüm sayıların toplamını hesaplayın. doğal sayılar(diğer kaynaklara göre) kadar dahil.” Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözüpek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Bunu denediniz mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak, toplamın şuna eşit olduğunu elde ederiz:
.
Böylece herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için formül şu şekilde olacaktır:

Bazı problemlerde n. terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendiniz hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının eşit olduğunu ve terimlerin toplamının eşit olduğunu buldu. Karar verdiğin şey bu mu?

Aslında, bir aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar, aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, hayal edin Antik Mısır ve o zamanın en büyük inşaat projesi - piramidin inşası... Resimde bunun bir tarafı görülüyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse, bir duvarı inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

Bu durumda ilerleme şu şekilde görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Becerebildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, kaydediciler bunları her biri üst katmanöncekinden bir eksik günlük içerir. Duvarın temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Yanıtlar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. İlk tek sayı, son sayı.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir grup katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi, ilerlemedeki sayıların sayısı olan - formülüyle yazılır.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

ARİTMETİK İLERLEME. ORTALAMA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Üzerinde sayı bulunan sayıya dizinin th üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (burada ilk terim eşittir ve fark eşittir). Veya (, fark).

n'inci terim formülü

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin inci terimini bulmak için önceki dokuzunu hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu şimdi anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendin için karar ver:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark ne? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O halde yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre, büyük matematikçi Karl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesapladı. İlk ve son sayıların toplamının eşit olduğunu, ikinci ve sondan bir önceki sayıların toplamının aynı olduğunu, sondan üçüncü ve üçüncü sayıların toplamının aynı olduğunu vb. fark etti. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Tüm iki basamaklı katların toplamını bulun.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftalarda toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan bir buzdolabının altı yıl sonra ruble karşılığında satılması durumunda, buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Yanıtlar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca katedilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

ARİTMETİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Bir ilerlemenin bir terimini, eğer komşu terimleri biliniyorsa (ilerlemedeki sayıların sayısı nerede) kolayca bulmanızı sağlar.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.

Neyse konu bitti. Eğer bu satırları okuyorsanız çok havalısınız demektir.

Çünkü insanların yalnızca %5'i bir konuda kendi başına ustalaşabiliyor. Ve eğer sonuna kadar okursanız, o zaman siz de bu %5'in içindesiniz!

Şimdi en önemli şey.

Bu konudaki teoriyi anlıyorsunuz. Ve tekrar ediyorum, bu... bu gerçekten süper! Zaten akranlarınızın büyük çoğunluğundan daha iyisiniz.

Sorun şu ki bu yeterli olmayabilir...

Ne için?

İçin başarılı tamamlama Birleşik Devlet Sınavı, üniversiteye kısıtlı bir bütçeyle ve EN ÖNEMLİSİ de ömür boyu kabul için.

Seni hiçbir şeye ikna etmeyeceğim, sadece tek bir şey söyleyeceğim...

Alınan insanlar iyi bir eğitim, almayanlardan çok daha fazlasını kazanın. Bu istatistik.

Ancak asıl mesele bu değil.

Önemli olan DAHA MUTLU olmalarıdır (böyle çalışmalar var). Belki de önlerine çok daha fazla fırsat çıktığı ve hayat daha parlak hale geldiği için? Bilmiyorum...

Ama kendin düşün...

Birleşik Devlet Sınavında diğerlerinden daha iyi olmak ve sonuçta... daha mutlu olmak için ne gerekir?

BU KONUDAKİ SORUNLARI ÇÖZEREK ELİNİZİ KAZANIN.

Sınav sırasında sizden teori sorulmayacak.

İhtiyacın olacak sorunları zamanında çözmek.

Ve eğer bunları çözmediyseniz (ÇOK!), kesinlikle bir yerlerde aptalca bir hata yapacaksınız veya zamanınız olmayacak.

Sporda olduğu gibi - kesin olarak kazanmak için bunu defalarca tekrarlamanız gerekir.

Koleksiyonu dilediğiniz yerde bulun, mutlaka çözümlerle, detaylı analiz ve karar ver, karar ver, karar ver!

Görevlerimizi kullanabilirsiniz (isteğe bağlı) ve elbette bunları öneririz.

Görevlerimizi daha iyi kullanmak için şu anda okuduğunuz YouClever ders kitabının ömrünün uzatılmasına yardımcı olmanız gerekir.

Nasıl? İki seçenek var:

  1. Bu makaledeki tüm gizli görevlerin kilidini açın -
  2. Ders kitabının 99 makalesinin tamamındaki tüm gizli görevlere erişimin kilidini açın - Bir ders kitabı satın alın - 499 RUR

Evet, ders kitabımızda buna benzer 99 makale var ve tüm görevlere ve bunların içindeki tüm gizli metinlere erişim anında açılabilir.

Sitenin TÜM ömrü boyunca tüm gizli görevlere erişim sağlanır.

Sonuç olarak...

Görevlerimizi beğenmiyorsanız başkalarını bulun. Sadece teoride durmayın.

“Anlamak” ve “çözebilirim” tamamen farklı becerilerdir. İkisine de ihtiyacın var.

Sorunları bulun ve çözün!