Speciális trigonometriai képletek. A trigonometria alapképletei

Külső

A cikk részletesen leírja az alapvető trigonometrikus azonosságokat, amelyek a sin, cos, t g, c t g kapcsolatát állapítják meg. adott szög. Ha egy függvény ismert, azon keresztül egy másik is megtalálható.

Trigonometrikus azonosságok megfontolásra ebben a cikkben. Az alábbiakban ezek származtatására mutatunk példát magyarázattal.

sin 2 α + cos 2 α = 1 t g α = sin α cos α , c t g α = cos α sin α t g α c t g α = 1 t g 2 α + 1 = 1 cos 2 α g, 1 + α c α

Yandex.RTB R-A-339285-1

Beszéljünk egy fontos trigonometrikus azonosságról, amelyet a trigonometria alapjának tekintenek.

sin 2 α + cos 2 α = 1

A megadott t g 2 α + 1 = 1 cos 2 α, 1 + c t g 2 α = 1 sin 2 α egyenlőségeket a főből úgy vezetjük le, hogy mindkét részt elosztjuk sin 2 α-val és cos 2 α-val. Ez után megkapjuk a t g α = sin α cos α, c t g α = cos α sin α és a t g α · c t g α = 1 -et - ez a szinusz, koszinusz, érintő és kotangens definícióinak következménye.

A sin 2 α + cos 2 α = 1 egyenlőség a fő trigonometrikus azonosság. Ennek bizonyításához az egységkör témájához kell fordulni.

Adjuk meg az A pont koordinátáit (1, 0), amely α szöggel történő elforgatás után A 1 ponttá válik. A sin és cos definíciója szerint az A 1 pont koordinátákat kap (cos α, sin α). Mivel A 1 az egységkörön belül található, ez azt jelenti, hogy a koordinátáknak ki kell elégíteniük ennek a körnek az x 2 + y 2 = 1 feltételét. A cos 2 α + sin 2 α = 1 kifejezésnek érvényesnek kell lennie. Ehhez minden α elforgatási szögre be kell bizonyítani a fő trigonometrikus azonosságot.

A trigonometriában a sin 2 α + cos 2 α = 1 kifejezést Pitagorasz-tételként használják a trigonometriában. Ehhez vegye figyelembe a részletes bizonyítékot.

Egy egységkör segítségével α szöggel elforgatjuk az A pontot (1, 0) koordinátákkal az O középpont körül. Az elforgatás után a pont megváltoztatja a koordinátákat, és egyenlővé válik A 1 (x, y) értékkel. Leengedjük az A 1 H merőleges egyenest O x-re az A 1 pontból.

Az ábrán jól látható, hogy a formáció derékszögű háromszög O A 1 N. Az O A 1 N és az O N lábak modulusa egyenlő, a bejegyzés a következő formában lesz: | A 1 H | = | y | , | O N | = | x | . Az O A 1 hipotenusz értéke megegyezik az egységkör sugarával, | O A 1 | = 1. Ezzel a kifejezéssel felírhatjuk az egyenlőséget a Pitagorasz-tétel segítségével: | A 1 N | 2 + | O N | 2 = | O A 1 | 2. Írjuk ezt az egyenlőséget | y | 2 + | x | 2 = 1 2, ami azt jelenti, hogy y 2 + x 2 = 1.

A sin α = y és cos α = x definícióját felhasználva a pontok koordinátái helyett a szögadatokat helyettesítjük, és továbblépünk a sin 2 α + cos 2 α = 1 egyenlőtlenségre.

Ezen a trigonometrikus azonosságon keresztül lehetséges az alapvető kapcsolat egy szög sin és cos között. Így ki tudjuk számolni egy ismert cos-szal rendelkező szög sinét és fordítva. Ehhez fel kell oldani a sin 2 α + cos 2 = 1-et a sin és cos vonatkozásában, majd megkapjuk a sin α = ± 1 - cos 2 α és cos α = ± 1 - sin 2 α alakú kifejezéseket. , ill. Az α szög nagysága határozza meg a kifejezés gyöke előtti előjelet. A részletes magyarázathoz el kell olvasnia a szinusz, koszinusz, érintő és kotangens trigonometrikus képletekkel történő kiszámításáról szóló részt.

Leggyakrabban az alapképletet a trigonometrikus kifejezések átalakítására vagy egyszerűsítésére használják. A szinusz és a koszinusz négyzetösszegét 1-gyel helyettesíthetjük. Az identitáshelyettesítés lehet közvetlen vagy fordított sorrendben: egység helyébe a szinusz és a koszinusz négyzeteinek összege kerül.

Érintő és kotangens szinuszon és koszinuszon keresztül

A koszinusz és a szinusz, az érintő és a kotangens definíciójából világos, hogy ezek egymással összefüggenek, ami lehetővé teszi a szükséges mennyiségek külön-külön történő átszámítását.

t g α = sin α cos α c t g α = cos α sin α

A definícióból a szinusz az y ordinátája, a koszinusz pedig az x abszcisszán. Az érintő az ordináta és az abszcissza kapcsolata. Így rendelkezünk:

t g α = y x = sin α cos α , és a kotangens kifejezés ellenkező jelentésű, azaz

c t g α = x y = cos α sin α .

Ebből következik, hogy a kapott t g α = sin α cos α és c t g α = cos α sin α azonosságokat sin és cos szögek segítségével határozzuk meg. Az érintőnek a szinusz és a köztük lévő szög koszinuszának arányát tekintjük, a kotangensnek pedig az ellenkezője.

Vegye figyelembe, hogy t g α = sin α cos α és c t g α = cos α sin α igaz az α szög bármely értékére, amelynek értékei benne vannak a tartományban. A t g α = sin α cos α képletből az α szög értéke különbözik π 2 + π · z-től, és c t g α = cos α sin α a π · z-től eltérő α szög értékét veszi fel, z a bármely egész szám értéke.

Az érintő és a kotangens kapcsolata

Van egy képlet, amely megmutatja a szögek közötti kapcsolatot az érintőn és a kotangensen keresztül. Ez a trigonometrikus azonosság fontos a trigonometriában, és a jelölése t g α · c t g α = 1. Értelmes α-nak bármilyen π 2 · z értéktől eltérő értéke, különben a függvények nem lesznek definiálva.

A t g α · c t g α = 1 képletnek megvannak a maga sajátosságai a bizonyításban. A definícióból azt kapjuk, hogy t g α = y x és c t g α = x y, így t g α · c t g α = y x · x y = 1. A kifejezést átalakítva és a t g α = sin α cos α és a c t g α = cos α sin α behelyettesítésével t g α · c t g α = sin α cos α · cos α sin α = 1 értéket kapjuk.

Ekkor az érintő és a kotangens kifejezése azt jelenti, hogy mikor kapunk végül kölcsönösen inverz számokat.

Érintő és koszinusz, kotangens és szinusz

A fő azonosságok átalakítása után arra a következtetésre jutunk, hogy az érintő a koszinuszon, a kotangens pedig a szinuszon keresztül kapcsolódik egymáshoz. Ez látható a t g 2 α + 1 = 1 cos 2 α, 1 + c t g 2 α = 1 sin 2 α képletekből.

A definíció a következő: egy szög érintőjének négyzetének és 1 összege törtnek felel meg, ahol a számlálóban 1, a nevezőben pedig egy adott szög koszinuszának négyzete, és az összeg a szög kotangensének négyzetének az ellenkezője. A sin 2 α + cos 2 α = 1 trigonometrikus azonosságnak köszönhetően a megfelelő oldalakat eloszthatjuk cos 2 α-val, és t g 2 α + 1 = 1 cos 2 α kapjuk, ahol a cos 2 α értéke nem lehet egyenlő nulla. A sin 2 α-val való osztásakor az 1 + c t g 2 α = 1 sin 2 α azonosságot kapjuk, ahol a sin 2 α értéke nem lehet egyenlő nullával.

A fenti kifejezésekből azt találtuk, hogy a t g 2 α + 1 = 1 cos 2 α azonosság igaz az α szög minden olyan értékére, amely nem tartozik π 2 + π · z-hez, és 1 + c t g 2 α = 1 sin 2 α a π · z intervallumhoz nem tartozó α értékeire.

Ha hibát észlel a szövegben, jelölje ki, és nyomja meg a Ctrl+Enter billentyűkombinációt

Lehet rendelni részletes megoldás a te feladatod!!!

A trigonometrikus függvény (`sin x, cos x, tan x` vagy `ctg x`) előjele alatt ismeretlent tartalmazó egyenlőséget trigonometrikus egyenletnek nevezzük, és ezek képleteit vizsgáljuk meg a továbbiakban.

A legegyszerűbb egyenletek a `sin x=a, cos x=a, tg x=a, ctg x=a`, ahol `x` a keresendő szög, `a` tetszőleges szám. Írjuk fel mindegyikhez a gyökképleteket.

1. `sin x=a` egyenlet.

Az `|a|>1` esetén nincs megoldás.

Amikor `|a| A \leq 1` végtelen számú megoldást tartalmaz.

Gyökképlet: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. "cos x=a" egyenlet

`|a|>1` esetén - mint a szinusz esetében, megoldások között valós számok nem rendelkezik.

Amikor `|a| A \leq 1` végtelen számú megoldást tartalmaz.

Gyökképlet: `x=\pm arccos a + 2\pi n, n \in Z`

Szinusz és koszinusz speciális esetei grafikonokban.

3. "tg x=a" egyenlet

Végtelen számú megoldása van az "a" bármely értékére.

Gyökérképlet: `x=arctg a + \pi n, n \in Z`

4. `ctg x=a` egyenlet

Ezenkívül végtelen számú megoldása van az "a" bármely értékére.

Gyökérképlet: `x=arcctg a + \pi n, n \in Z`

A táblázatban szereplő trigonometrikus egyenletek gyökereinek képletei

A szinuszhoz:
A koszinuszhoz:
Érintő és kotangens esetén:
Inverzeket tartalmazó egyenletek megoldására szolgáló képletek trigonometrikus függvények:

Trigonometrikus egyenletek megoldási módszerei

Bármely trigonometrikus egyenlet megoldása két lépésből áll:

  • a legegyszerűbbre való átalakítás segítségével;
  • oldja meg a fent leírt gyökképletek és táblázatok segítségével kapott legegyszerűbb egyenletet.

Nézzük meg a fő megoldási módszereket példákon keresztül.

Algebrai módszer.

Ez a módszer magában foglalja egy változó lecserélését és egyenlőségbe való behelyettesítését.

Példa. Oldja meg az egyenletet: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0,

cserélje ki: `cos(x+\frac \pi 6)=y, majd `2y^2-3y+1=0`,

megtaláljuk a gyökereket: `y_1=1, y_2=1/2`, amiből két eset következik:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Válasz: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizáció.

Példa. Oldja meg az egyenletet: `sin x+cos x=1`.

Megoldás. Mozgassuk az egyenlőség összes tagját balra: `sin x+cos x-1=0`. Használatával a bal oldalt transzformáljuk és faktorizáljuk:

"sin x - 2sin^2 x/2=0",

"2sin x/2 cos x/2-2sin^2 x/2=0",

"2sin x/2 (cos x/2-sin x/2)=0",

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. „cos x/2-sin x/2=0”, „tg x/2=1”, „x/2=arctg 1+ \pi n”, „x/2=\pi/4+ \pi n” , `x_2=\pi/2+ 2\pi n`.

Válasz: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Redukálás homogén egyenletre

Először is le kell redukálnia ezt a trigonometrikus egyenletet a két alak egyikére:

`a sin x+b cos x=0` (elsőfokú homogén egyenlet) vagy `a sin^2 x + b sin x cos x +c cos^2 x=0` (másodfokú homogén egyenlet).

Ezután ossza el mindkét részt `cos x \ne 0` -val - az első esetben, és "cos^2 x \ne 0" - a második esetben. Egyenleteket kapunk a `tg x`-re: `a tg x+b=0` és `a tg^2 x + b tg x +c =0`, amelyeket ismert módszerekkel kell megoldani.

Példa. Oldja meg az egyenletet: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Megoldás. Írjuk a jobb oldalt a következőképpen: `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Ez egy homogén másodfokú trigonometrikus egyenlet, bal és jobb oldalát elosztjuk `cos^2 x \ne 0`-val, így kapjuk:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0

`tg^2 x+tg x — 2=0`. Vezessük be a `tg x=t` helyettesítést, ami `t^2 + t - 2=0`-t eredményez. Ennek az egyenletnek a gyöke: `t_1=-2` és `t_2=1`. Akkor:

  1. „tg x=-2”, „x_1=arctg (-2)+\pi n”, „n \in Z”
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Válasz. `x_1=arctg (-2)+\pi n`, `n \in Z, `x_2=\pi/4+\pi n`, `n \in Z`.

Áttérés félszögre

Példa. Oldja meg az egyenletet: "11 sin x - 2 cos x = 10".

Megoldás. Alkalmazzuk a kettős szögképleteket, aminek eredménye: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

"4 tg^2 x/2 – 11 tg x/2 +6=0".

A fent leírt algebrai módszert alkalmazva a következőket kapjuk:

  1. „tg x/2=2”, „x_1=2 arctg 2+2\pi n”, „n \in Z”,
  2. „tg x/2=3/4”, „x_2=arctg 3/4+2\pi n”, „n \in Z”.

Válasz. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Segédszög bevezetése

Az „a sin x + b cos x =c” trigonometrikus egyenletben, ahol a,b,c együtthatók, x pedig egy változó, mindkét oldalt ossza el „sqrt (a^2+b^2)”-vel:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))".

A bal oldali együtthatók szinusz és koszinusz tulajdonságaival rendelkeznek, vagyis négyzeteinek összege 1, moduljaik pedig nem nagyobbak 1-nél. Jelöljük őket a következőképpen: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, akkor:

`cos \varphi sin x + sin \varphi cos x =C`.

Nézzük meg közelebbről a következő példát:

Példa. Oldja meg az egyenletet: `3 sin x+4 cos x=2`.

Megoldás. Az egyenlőség mindkét oldalát elosztjuk `sqrt (3^2+4^2)-vel, így kapjuk:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))".

"3/5 sin x+4/5 cos x=2/5".

Jelöljük `3/5 = cos \varphi` , `4/5=sin \varphi`. Mivel a `sin \varphi>0`, `cos \varphi>0`, akkor a `\varphi=arcsin 4/5`-t vesszük segédszögnek. Ezután az egyenlőségünket a következő formában írjuk fel:

`cos \varphi sin x+sin \varphi cos x=2/5`

A szinusz szögösszegének képletét alkalmazva egyenlőségünket a következő formában írjuk fel:

"sin (x+\varphi)=2/5",

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Válasz. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Törtracionális trigonometrikus egyenletek

Ezek olyan tört egyenlőségek, amelyek számlálói és nevezői trigonometrikus függvényeket tartalmaznak.

Példa. Oldja meg az egyenletet. `\frac (sin x)(1+cos x)=1-cos x.

Megoldás. Szorozd meg és oszd el az egyenlőség jobb oldalát "(1+cos x)"-vel. Ennek eredményeként a következőket kapjuk:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0

"\frac (sin x-sin^2 x)(1+cos x)=0".

Figyelembe véve, hogy a nevező nem lehet egyenlő nullával, a következőt kapjuk: `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Tegyük egyenlővé a tört számlálóját nullával: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Ezután `sin x=0` vagy `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Tekintettel arra, hogy ` x \ne \pi+2\pi n, n \in Z`, a megoldások: `x=2\pi n, n \in Z` és `x=\pi /2+2\pi n` , `n \in Z`.

Válasz. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

A trigonometriát és különösen a trigonometrikus egyenleteket a geometria, a fizika és a mérnöki tudomány szinte minden területén használják. A tanulás 10. osztályban kezdődik, az egységes államvizsgához mindig vannak feladatok, úgyhogy próbálja meg emlékezni az összes képletre trigonometrikus egyenletek- biztosan hasznosak lesznek számodra!

Azonban még csak memorizálni sem kell őket, a lényeg az, hogy megértsük a lényeget és le tudjuk vezetni. Nem olyan nehéz, mint amilyennek látszik. Győződjön meg Ön is a videó megtekintésével.

A Kr.e. ötödik században az ókori görög filozófus, Eleai Zénón megfogalmazta híres apóriáit, amelyek közül a leghíresebb az „Achilles és a teknős” apóriája. Így hangzik:

Tegyük fel, hogy Akhilleusz tízszer gyorsabban fut, mint a teknősbéka, és ezer lépéssel mögötte van. Amíg Akhilleusz lefutja ezt a távot, a teknősbéka száz lépést kúszik ugyanabba az irányba. Amikor Akhilleusz száz lépést fut, a teknősbéka újabb tíz lépést kúszik, és így tovább. A folyamat a végtelenségig folytatódik, Akhilleusz soha nem éri utol a teknősbékát.

Ez az érvelés logikus megrázkódtatássá vált minden következő generáció számára. Arisztotelész, Diogenész, Kant, Hegel, Hilbert... Valamennyien így vagy úgy tekintették Zénón apóriáját. A sokk olyan erős volt, hogy " ... a viták a mai napig folynak, a tudományos közösség még nem tudott közös véleményre jutni a paradoxonok lényegéről ... matematikai elemzés, halmazelmélet, új fizikai és filozófiai megközelítések vontak be a kérdés vizsgálatába ; egyik sem lett általánosan elfogadott megoldás a problémára..."[Wikipedia, "Zeno's Aporia". Mindenki megérti, hogy becsapják, de senki sem érti, miből áll a megtévesztés.

Matematikai szempontból Zénó aporiájában egyértelműen bemutatta a mennyiségből a -ba való átmenetet. Ez az átmenet állandó helyett alkalmazást jelent. Ha jól értem, a változó mértékegységek használatára szolgáló matematikai apparátust vagy még nem fejlesztették ki, vagy nem alkalmazták Zénó apóriájára. A megszokott logikánk alkalmazása csapdába vezet bennünket. Mi a gondolkodás tehetetlensége miatt állandó időegységeket alkalmazunk a reciprok értékre. Fizikai szempontból ez úgy tűnik, mintha az idő lelassulna, amíg teljesen meg nem áll abban a pillanatban, amikor Akhilleusz utoléri a teknőst. Ha megáll az idő, Akhilleusz már nem tudja lehagyni a teknősbékát.

Ha megfordítjuk a megszokott logikánkat, minden a helyére kerül. Akhilleusz állandó sebességgel fut. Útjának minden következő szakasza tízszer rövidebb, mint az előző. Ennek megfelelően a leküzdésére fordított idő tízszer kevesebb, mint az előzőnél. Ha ebben a helyzetben alkalmazzuk a „végtelen” fogalmát, akkor helyes lenne azt mondani, hogy „Achilles végtelenül gyorsan utoléri a teknőst”.

Hogyan lehet elkerülni ezt a logikai csapdát? Maradjon állandó időegységekben, és ne ugorjon rá reciprok. Zénón nyelvén ez így néz ki:

Amíg Akhilleusz ezer lépést fut, addig a teknősbéka száz lépést kúszik ugyanabba az irányba. Az elsővel megegyező következő időintervallumban Akhilleusz újabb ezer lépést fut, a teknősbéka pedig száz lépést kúszik. Most Akhilleusz nyolcszáz lépéssel megelőzi a teknősbékát.

Ez a megközelítés adekvát módon írja le a valóságot minden logikai paradoxon nélkül. De ez nem komplett megoldás Problémák. Einstein kijelentése a fénysebesség ellenállhatatlanságáról nagyon hasonlít Zénón „Achilles és a teknős” című apóriájához. Ezt a problémát még tanulmányoznunk, újragondolnunk és megoldanunk kell. A megoldást pedig nem végtelenül nagy számokban, hanem mértékegységekben kell keresni.

Zénó másik érdekes apóriája egy repülő nyílról mesél:

A repülő nyíl mozdulatlan, hiszen az idő minden pillanatában nyugalomban van, és mivel minden pillanatban nyugalomban van, mindig nyugalomban van.

Ebben az apóriában a logikai paradoxont ​​nagyon egyszerűen leküzdjük - elég tisztázni, hogy minden időpillanatban egy repülő nyíl nyugalomban van a tér különböző pontjain, ami valójában mozgás. Itt még egy szempontot kell megjegyezni. Egy úton lévő autóról készült fényképből lehetetlen meghatározni sem a mozgás tényét, sem a távolságot. Annak megállapításához, hogy egy autó mozog-e, két fényképre van szüksége, amelyek ugyanarról a pontról készültek, különböző időpontokban, de nem tudja meghatározni a távolságot tőlük. Az autótól való távolság meghatározásához két fényképre van szükség, amelyek a tér különböző pontjairól készültek egy időben, de ezekből nem lehet meghatározni a mozgás tényét (természetesen további adatokra van szükség a számításokhoz, a trigonometria segít ). Amire szeretnék rámutatni Speciális figyelem, hogy két pont az időben és két pont a térben különböző dolog, amit nem szabad összekeverni, mert más-más lehetőséget biztosítanak a kutatáshoz.

2018. július 4., szerda

A készlet és a multihalmaz közötti különbségek nagyon jól le vannak írva a Wikipédián. Lássuk.

Amint láthatja, „nem lehet két azonos elem egy halmazban”, de ha egy halmazban azonos elemek vannak, akkor az ilyen halmazt „multisetnek” nevezzük. Az értelmes lények soha nem fogják megérteni az ilyen abszurd logikát. Ez a beszélő papagájok és képzett majmok szintje, akiknek nincs intelligenciája a „teljesen” szóból. A matematikusok közönséges oktatóként viselkednek, és abszurd elképzeléseiket hirdetik nekünk.

Egyszer régen a hidat építő mérnökök egy csónakban voltak a híd alatt, miközben tesztelték a hidat. Ha a híd összeomlott, a középszerű mérnök meghalt teremtménye romjai alatt. Ha a híd bírta a terhelést, a tehetséges mérnök más hidakat épített.

Bármennyire is bújnak a matematikusok a „figyelj, a házban vagyok” kifejezés mögé, vagy inkább: „a matematika elvont fogalmakat tanulmányoz”, van egy köldökzsinór, amely elválaszthatatlanul összeköti őket a valósággal. Ez a köldökzsinór pénz. Alkalmazzuk a matematikai halmazelméletet magukra a matematikusokra.

Nagyon jól tanultunk matematikát, és most a pénztárnál ülünk, és kiosztjuk a fizetéseket. Tehát egy matematikus jön hozzánk a pénzéért. Kiszámoljuk neki a teljes összeget, és az asztalunkra fektetjük különböző kupacokba, amelyekbe azonos címletű bankjegyeket teszünk. Ezután minden kupacból kiveszünk egy számlát, és megadjuk a matematikusnak a „matematikai fizetéskészletét”. Magyarázzuk el a matematikusnak, hogy a fennmaradó számlákat csak akkor kapja meg, ha bebizonyítja, hogy az azonos elemek nélküli halmaz nem egyenlő az azonos elemeket tartalmazó halmazzal. Itt kezdődik a móka.

Először is működni fog a képviselők logikája: „Ezt másokra lehet alkalmazni, de rám nem!” Aztán elkezdenek megnyugtatni bennünket, hogy az azonos címletű váltószámok eltérőek, ami azt jelenti, hogy nem tekinthetők azonos elemeknek. Oké, számoljuk a fizetéseket érmében – nincsenek számok az érméken. Itt a matematikus eszeveszetten emlékezni kezd a fizikára: különböző érméken van különböző mennyiségben minden érme szennyeződése, kristályszerkezete és atomi elrendezése egyedi...

És most van a legérdekesebb kérdésem: hol van az a határ, amelyen túl a multihalmaz elemei halmaz elemeivé válnak, és fordítva? Ilyen vonal nem létezik – mindent a sámánok döntenek el, a tudomány itt meg sem hazudik.

Nézz ide. Azonos pályaterületű futballstadionokat választunk. A mezők területei megegyeznek - ami azt jelenti, hogy van egy multihalmazunk. De ha megnézzük ezeknek a stadionoknak a nevét, sokat kapunk, mert a nevek különbözőek. Amint látja, ugyanaz az elemkészlet halmaz és multihalmaz is. Melyik a helyes? És itt a matematikus-sámán-éles előhúz egy adu ászt az ingujjából, és mesélni kezd nekünk vagy egy halmazról, vagy egy multihalmazról. Mindenesetre meg fog győzni minket az igazáról.

Ahhoz, hogy megértsük, hogyan operálnak a modern sámánok a halmazelmélettel, a valósághoz kötve, elég egy kérdésre válaszolni: miben különböznek egy halmaz elemei egy másik halmaz elemeitől? Megmutatom, minden "nem egyetlen egészként elképzelhető" vagy "egyetlen egészként nem elképzelhető" nélkül.

2018. március 18. vasárnap

Egy szám számjegyeinek összege sámánok tánca tamburával, aminek semmi köze a matematikához. Igen, a matematika órán azt tanítják, hogy keressük meg egy szám számjegyeinek összegét és használjuk, de ezért ők sámánok, hogy megtanítsák leszármazottaikat tudásukra és bölcsességükre, különben a sámánok egyszerűen kihalnak.

Bizonyítékra van szüksége? Nyissa meg a Wikipédiát, és próbálja meg megtalálni a "Számjegyek összege" oldalt. Ő nem létezik. A matematikában nincs olyan képlet, amellyel bármely szám számjegyeinek összegét meg lehetne találni. Hiszen a számok grafikus szimbólumok, amelyekkel számokat írunk, és a matematika nyelvén a feladat így hangzik: „Keresd meg a tetszőleges számot ábrázoló grafikus szimbólumok összegét!” A matematikusok nem tudják megoldani ezt a problémát, de a sámánok könnyen meg tudják oldani.

Találjuk ki, mit és hogyan tegyünk annak érdekében, hogy megtaláljuk egy adott szám számjegyeinek összegét. Tehát legyen az 12345 szám. Mit kell tenni, hogy megtaláljuk ennek a számnak a számjegyeinek összegét? Vegyük sorra az összes lépést.

1. Írja fel a számot egy papírra. Mit tettünk? A számot grafikus számszimbólummá alakítottuk át. Ez nem matematikai művelet.

2. Egy kapott képet több, egyedi számokat tartalmazó képre vágunk. A kép kivágása nem matematikai művelet.

3. Alakítsa át az egyes grafikus szimbólumokat számokká. Ez nem matematikai művelet.

4. Adja hozzá a kapott számokat. Ez most a matematika.

Az 12345 számjegyeinek összege 15. Ezek a sámánok által tanított „szabás- és varrótanfolyamok”, amelyeket a matematikusok használnak. De ez még nem minden.

Matematikai szempontból nem mindegy, hogy melyik számrendszerben írunk egy számot. Szóval, be különböző rendszerek A számításban ugyanazon szám számjegyeinek összege eltérő lesz. A matematikában a számrendszert alsó indexként tüntetjük fel a számtól jobbra. VAL VEL egy nagy szám 12345 Nem akarom becsapni a fejem, nézzük a 26-os számot a cikkből. Írjuk fel ezt a számot bináris, oktális, decimális és hexadecimális számrendszerben. Nem nézünk mikroszkóp alatt minden lépést, ezt már megtettük. Nézzük az eredményt.

Mint látható, a különböző számrendszerekben ugyanazon szám számjegyeinek összege eltérő. Ennek az eredménynek semmi köze a matematikához. Ez ugyanaz, mintha egy téglalap területét méterben és centiméterben határozná meg, teljesen más eredményeket kapna.

A nulla minden számrendszerben ugyanúgy néz ki, és nincs számjegyösszege. Ez egy újabb érv amellett, hogy. Kérdés matematikusokhoz: hogyan lehet a matematikában kijelölni valamit, ami nem szám? A matematikusok számára a számokon kívül semmi sem létezik? Ezt megengedhetem a sámánoknak, de nem a tudósoknak. A valóság nem csak a számokból áll.

A kapott eredményt annak bizonyítékának kell tekinteni, hogy a számrendszerek a számok mértékegységei. Hiszen nem hasonlíthatjuk össze a számokat különböző mértékegységekkel. Ha ugyanazok a műveletek ugyanazon mennyiség különböző mértékegységeivel ahhoz vezetnek különböző eredményeketösszehasonlításuk után azt jelenti, hogy semmi köze a matematikához.

Mi az igazi matematika? Ilyenkor egy matematikai művelet eredménye nem függ a szám nagyságától, az alkalmazott mértékegységtől és attól, hogy ki végzi ezt a műveletet.

Jelölje be az ajtón Kinyitja az ajtót és azt mondja:

Ó! Ez nem a női mosdó?
- Fiatal nő! Ez egy laboratórium a lelkek indefil szentségének tanulmányozására a mennybemenetelük során! Halo a tetején és nyíl felfelé. Milyen másik wc?

Nő... A tetején lévő halo és a lefelé mutató nyíl férfi.

Ha egy ilyen dizájnművészeti alkotás naponta többször felvillan a szemed előtt,

Akkor nem meglepő, hogy hirtelen egy furcsa ikont talál az autójában:

Én személy szerint igyekszem mínusz négy fokot látni egy kakáló emberben (egy kép) (több képből álló kompozíció: mínusz jel, négyes szám, fokok megjelölése). És szerintem ez a lány nem bolond, aki nem ismeri a fizikát. Csak erős sztereotípiája van a grafikus képek észlelésével kapcsolatban. A matematikusok pedig állandóan ezt tanítják nekünk. Íme egy példa.

Az 1A nem „mínusz négy fok” vagy „egy a”. Ez a "pooping man" vagy a "huszonhat" szám hexadecimális jelöléssel. Azok, akik folyamatosan ebben a számrendszerben dolgoznak, automatikusan egy számot és egy betűt egyetlen grafikus szimbólumként érzékelnek.

Trigonometrikus azonosságok- ezek olyan egyenlőségek, amelyek kapcsolatot létesítenek egy szög szinusza, koszinusza, érintője és kotangense között, amely lehetővé teszi ezen függvények bármelyikének megtalálását, feltéve, hogy bármely másik ismert.

tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

tg \alpha \cdot ctg \alpha = 1

Ez az azonosság azt mondja, hogy egy szög szinuszának négyzetének és egy szög koszinuszának négyzetének összege egyenlő eggyel, ami a gyakorlatban lehetővé teszi egy szög szinuszának kiszámítását, ha ismerjük a koszinuszát és fordítva. .

A trigonometrikus kifejezések konvertálásakor nagyon gyakran használják ezt az azonosságot, amely lehetővé teszi, hogy egy szög koszinusza és szinuszának négyzetösszegét eggyel helyettesítse, és a csereműveletet fordított sorrendben hajtsa végre.

Érintő és kotangens keresése szinusz és koszinusz segítségével

tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

Ezek az azonosságok a szinusz, koszinusz, érintő és kotangens definícióiból alakulnak ki. Hiszen ha megnézzük, akkor értelemszerűen az y ordináta szinusz, az x abszcissza pedig koszinusz. Ekkor az érintő egyenlő lesz az aránnyal \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), és az arány \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- kotangens lesz.

Tegyük hozzá, hogy csak olyan \alpha szögek esetén érvényesek az azonosságok, amelyeknél a bennük szereplő trigonometrikus függvényeknek van értelme, ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

Például: tg \alpha = \frac(\sin \alpha)(\cos \alpha)\alpha szögekre érvényes, amelyek különböznek a \frac(\pi)(2)+\pi z, A ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- a \pi z-től eltérő \alpha szög esetén z egész szám.

Az érintő és a kotangens kapcsolata

tg \alpha \cdot ctg \alpha=1

Ez az azonosság csak azokra az \alpha szögekre érvényes, amelyek eltérnek a \frac(\pi)(2) z. Ellenkező esetben sem a kotangens, sem az érintő nem kerül meghatározásra.

A fenti pontok alapján azt kapjuk, hogy tg \alpha = \frac(y)(x), A ctg \alpha=\frac(x)(y). Ebből következik, hogy tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Így ugyanannak a szögnek az érintője és kotangense, amelynél értelmet nyernek, kölcsönösen inverz számok.

Az érintő és a koszinusz, a kotangens és a szinusz összefüggései

tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- az \alpha és 1 szög érintőjének négyzetének összege egyenlő ennek a szögnek a koszinuszának fordított négyzetével. Ez az azonosság minden \alfára érvényes, kivéve \frac(\pi)(2)+ \pi z.

1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)- 1 összege és az \alpha szög kotangensének négyzete egyenlő az adott szög szinuszának inverz négyzetével. Ez az azonosság minden \alfára érvényes, amely különbözik a \pi z-től.

Példák problémák megoldására trigonometrikus identitások használatával

1. példa

Keresse meg a \sin \alpha és a tg \alpha if függvényeket \cos \alpha=-\frac12És \frac(\pi)(2)< \alpha < \pi ;

Megoldás megjelenítése

Megoldás

A \sin \alpha és \cos \alpha függvényeket a képlet kapcsolja össze \sin^(2)\alpha + \cos^(2) \alpha = 1. Behelyettesítve ebbe a képletbe \cos \alpha = -\frac12, kapunk:

\sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

Ennek az egyenletnek 2 megoldása van:

\sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

Feltétel szerint \frac(\pi)(2)< \alpha < \pi . A második negyedben a szinusz pozitív, így \sin \alpha = \frac(\sqrt 3)(2).

A tan \alpha megtalálásához a képletet használjuk tg \alpha = \frac(\sin \alpha)(\cos \alpha)

tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

2. példa

Keresse meg a \cos \alpha és a ctg \alpha függvényt, ha és \frac(\pi)(2)< \alpha < \pi .

Megoldás megjelenítése

Megoldás

Behelyettesítés a képletbe \sin^(2)\alpha + \cos^(2) \alpha = 1 adott szám \sin \alpha=\frac(\sqrt3)(2), kapunk \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. Ennek az egyenletnek két megoldása van \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

Feltétel szerint \frac(\pi)(2)< \alpha < \pi . A második negyedévben a koszinusz negatív, tehát \cos \alpha = -\sqrt\frac14=-\frac12.

A ctg \alpha megtalálásához a képletet használjuk ctg \alpha = \frac(\cos \alpha)(\sin \alpha). Ismerjük a megfelelő értékeket.

ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).