Sinüs alfa neye eşittir? Temel trigonometrik kimlikler

Teçhizat

Trigonometri, matematik biliminin bir dalıdır ve trigonometrik fonksiyonlar ve geometride kullanımı. Trigonometrinin gelişimi antik Yunan'da başladı. Orta Çağ boyunca Orta Doğu ve Hindistan'dan bilim adamlarının bu bilimin gelişmesine önemli katkıları olmuştur.

Bu makale şuna adanmıştır: temel konseptler ve trigonometrinin tanımları. Temel trigonometrik fonksiyonların tanımlarını tartışır: sinüs, kosinüs, tanjant ve kotanjant. Anlamları geometri bağlamında açıklanmış ve gösterilmiştir.

Yandex.RTB R-A-339285-1

Başlangıçta argümanı açı olan trigonometrik fonksiyonların tanımları bir dik üçgenin kenarlarının oranı cinsinden ifade ediliyordu.

Trigonometrik fonksiyonların tanımları

Bir açının sinüsü (sin α), bu açının karşısındaki kenarın hipotenüse oranıdır.

Açının kosinüsü (cos α) - bitişik bacağın hipotenüse oranı.

Açı teğeti (t g α) - karşı tarafın bitişik tarafa oranı.

Açı kotanjantı (c t g α) - bitişik tarafın karşı tarafa oranı.

Bu tanımlar şunun için verilmiştir: dar açı doğru üçgen!

Bir örnek verelim.

İÇİNDE ABC üçgeni C dik açısında A açısının sinüsü, BC kenarının AB hipotenüsüne oranına eşittir.

Sinüs, kosinüs, teğet ve kotanjant tanımları, bu fonksiyonların değerlerini üçgenin kenarlarının bilinen uzunluklarından hesaplamanıza olanak tanır.

Hatırlanması önemli!

Sinüs ve kosinüs değerlerinin aralığı -1'den 1'e kadardır. Yani sinüs ve kosinüs -1'den 1'e kadar değerler alır. Teğet ve kotanjantın değer aralığı sayı doğrusunun tamamıdır, yani bu işlevler herhangi bir değeri alabilir.

Yukarıda verilen tanımlar dar açılar için geçerlidir. Trigonometride, değeri dar açıdan farklı olarak 0 ila 90 derece ile sınırlı olmayan dönme açısı kavramı tanıtıldı. Derece veya radyan cinsinden dönme açısı - ∞ ila + ∞ arasında herhangi bir gerçek sayı ile ifade edilir.

Bu bağlamda keyfi büyüklükte bir açının sinüs, kosinüs, tanjant ve kotanjantını tanımlayabiliriz. Merkezi Kartezyen koordinat sisteminin başlangıç ​​noktasında olan bir birim çember düşünelim.

Koordinatları (1, 0) olan başlangıç ​​noktası A, birim çemberin merkezi etrafında belirli bir α açısı boyunca döner ve A 1 noktasına gider. Tanım A 1 (x, y) noktasının koordinatları cinsinden verilmiştir.

Dönme açısının sinüsü (sinüsü)

Dönme açısı α'nın sinüsü, A1 (x, y) noktasının ordinatıdır. günah α = y

Dönme açısının kosinüsü (cos)

Dönme açısı α'nın kosinüsü, A1 (x, y) noktasının apsisidir. çünkü α = x

Dönme açısının tanjantı (tg)

Dönme açısı α'nın tanjantı, A1 (x, y) noktasının ordinatının apsisine oranıdır. t g α = y x

Dönme açısının kotanjantı (ctg)

Dönme açısı α'nın kotanjantı, A1 noktasının (x, y) apsisinin ordinatına oranıdır. c t g α = x y

Sinüs ve kosinüs herhangi bir dönüş açısı için tanımlanır. Bu mantıklıdır çünkü bir noktanın dönme sonrasında apsisi ve ordinatı herhangi bir açıda belirlenebilir. Teğet ve kotanjantta durum farklıdır. Döndürme sonrasında bir nokta sıfır apsisli (0, 1) ve (0, - 1) bir noktaya gittiğinde teğet tanımsızdır. Bu gibi durumlarda, t g α = y x teğet ifadesi, sıfıra bölünmeyi içerdiğinden, hiçbir anlam ifade etmez. Kotanjant için de durum benzerdir. Aradaki fark, bir noktanın ordinatının sıfıra gittiği durumlarda kotanjantın tanımlı olmamasıdır.

Hatırlanması önemli!

Sinüs ve kosinüs herhangi bir α açısı için tanımlanır.

Teğet, α = 90° + 180° k, k ∈ Z (α = π 2 + π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Kotanjant, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Karar verirken pratik örnekler"α dönme açısının sinüsü" demeyin. "Dönme açısı" kelimeleri basitçe atlanmıştır, bu da neyin tartışıldığının bağlamdan zaten açıkça anlaşıldığını ima etmektedir.

Sayılar

Bir sayının dönme açısından ziyade sinüs, kosinüs, tanjant ve kotanjantını belirlemeye ne dersiniz?

Bir sayının sinüs, kosinüs, tanjant, kotanjantı

Bir sayının sinüs, kosinüs, tanjant ve kotanjantı T sırasıyla sinüs, kosinüs, teğet ve kotanjanta eşit olan bir sayıdır. T radyan.

Örneğin, 10 π sayısının sinüsü, 10 π rad dönme açısının sinüsüne eşittir.

Bir sayının sinüsünü, kosinüsünü, tanjantını ve kotanjantını belirlemeye yönelik başka bir yaklaşım daha vardır. Şimdi ona daha yakından bakalım.

Herhangi biri gerçek Numara T Birim çember üzerindeki bir nokta, dikdörtgen Kartezyen koordinat sisteminin başlangıç ​​noktasındaki merkezle ilişkilendirilir. Sinüs, kosinüs, tanjant ve kotanjant bu noktanın koordinatları üzerinden belirlenir.

Çemberin başlangıç ​​noktası koordinatları (1, 0) olan A noktasıdır.

Pozitif sayı T

Negatif sayı T başlangıç ​​noktasının daire etrafında saat yönünün tersine hareket etmesi ve t yolunu geçmesi durumunda gideceği noktaya karşılık gelir.

Artık bir sayı ile bir daire üzerindeki bir nokta arasındaki bağlantı kurulduğuna göre sinüs, kosinüs, teğet ve kotanjantın tanımına geçiyoruz.

T'nin sinüsü (günahı)

Bir sayının sinüsü T- birim çember üzerinde sayıya karşılık gelen bir noktanın koordinatı T. günah t = y

Kosinüs (cos) t

Bir sayının kosinüsü T- birim çemberin sayıya karşılık gelen noktasının apsisi T. çünkü t = x

T'nin tanjantı (tg)

Bir sayının tanjantı T- birim çember üzerindeki sayıya karşılık gelen bir noktanın ordinatının apsisine oranı T. t g t = y x = sin t cos t

En son tanımlar bu paragrafın başında verilen tanıma uygundur ve çelişmez. Sayıya karşılık gelen dairenin üzerine gelin T, bir açıyla döndükten sonra başlangıç ​​noktasının gittiği noktaya denk gelir T radyan.

Açısal ve sayısal argümanın trigonometrik fonksiyonları

α açısının her değeri, bu açının sinüs ve kosinüsünün belirli bir değerine karşılık gelir. Tıpkı α = 90° + 180°k dışındaki tüm α açıları gibi, k ∈ Z (α = π 2 + π k, k ∈ Z) belirli bir teğet değerine karşılık gelir. Kotanjant, yukarıda belirtildiği gibi, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm α'lar için tanımlanır.

sin α, cos α, t g α, c t g α'nın alfa açısının fonksiyonları veya açısal argümanın fonksiyonları olduğunu söyleyebiliriz.

Benzer şekilde sinüs, kosinüs, tanjant ve kotanjanttan sayısal bir argümanın fonksiyonları olarak bahsedebiliriz. Her gerçek sayı T bir sayının sinüs veya kosinüsünün belirli bir değerine karşılık gelir T. π 2 + π · k, k ∈ Z dışındaki tüm sayılar bir teğet değere karşılık gelir. Benzer şekilde kotanjant, π · k, k ∈ Z dışındaki tüm sayılar için tanımlanır.

Trigonometrinin temel fonksiyonları

Sinüs, kosinüs, tanjant ve kotanjant temel trigonometrik fonksiyonlardır.

Trigonometrik fonksiyonun hangi argümanıyla (açısal argüman veya sayısal argüman) uğraştığımız bağlamdan genellikle açıktır.

En başta verilen tanımlara ve 0 ila 90 derece aralığında yer alan alfa açısına dönelim. Sinüs, kosinüs, tanjant ve kotanjantın trigonometrik tanımları, bir dik üçgenin en boy oranlarının verdiği geometrik tanımlarla tamamen tutarlıdır. Hadi gösterelim.

Dikdörtgen Kartezyen koordinat sisteminde merkezi olan bir birim çemberi ele alalım. A (1, 0) başlangıç ​​noktasını 90 dereceye kadar bir açıyla döndürelim ve ortaya çıkan A 1 (x, y) noktasından apsis eksenine dik bir çizelim. Alınan dik üçgen A 1 O H açısı a dönme açısına eşittir, O H bacağının uzunluğu A 1 (x, y) noktasının apsisine eşittir. Açının karşısındaki bacağın uzunluğu A 1 (x, y) noktasının ordinatına eşittir ve birim dairenin yarıçapı olduğu için hipotenüsün uzunluğu bire eşittir.

Geometrideki tanıma uygun olarak, α açısının sinüsü karşı tarafın hipotenüse oranına eşittir.

sin α = A 1 H O A 1 = y 1 = y

Bu, bir dik üçgende bir dar açının sinüsünü en boy oranı aracılığıyla belirlemenin, alfa 0 ila 90 derece aralığında yer alacak şekilde dönme açısı a'nın sinüsünü belirlemeye eşdeğer olduğu anlamına gelir.

Benzer şekilde kosinüs, tanjant ve kotanjant için tanımların uygunluğu gösterilebilir.

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.

– Kesinlikle trigonometri ile ilgili görevler olacak. Trigonometri, sinüsler, kosinüsler, teğetler ve kotanjantlarla dolu çok sayıda zor formülü doldurma ihtiyacı nedeniyle çoğu zaman sevilmez. Site zaten bir zamanlar Euler ve Peel formülleri örneğini kullanarak unutulmuş bir formülün nasıl hatırlanacağı konusunda tavsiyeler vermişti.

Ve bu yazıda sadece en basit beş tanesini kesin olarak bilmenin yeterli olduğunu göstermeye çalışacağız. trigonometrik formüller ve geri kalanı hakkında Genel fikir ve giderken onları dışarı çıkar. Tıpkı DNA'da olduğu gibi: Molekül, tamamlanmış bir canlı varlığın tüm planlarını saklamaz. Aksine, mevcut amino asitlerden bir araya getirilmesi için talimatlar içerir. Yani trigonometride biraz bilgi sahibi olmak Genel İlkeler, akılda tutulması gereken küçük bir grup formülden gerekli tüm formülleri alacağız.

Aşağıdaki formüllere güveneceğiz:

Sinüs ve kosinüs toplamları formüllerinden, kosinüs fonksiyonunun paritesini ve sinüs fonksiyonunun tuhaflığını bilerek, b yerine -b'yi koyarak, farklar için formüller elde ederiz:

  1. Farkın sinüsü: günah(a-b) = günahAçünkü(-B)+çünküAgünah(-B) = günahAçünküB-çünküAgünahB
  2. Farkın kosinüsü: çünkü(a-b) = çünküAçünkü(-B)-günahAgünah(-B) = çünküAçünküB+günahAgünahB

a = b'yi aynı formüllere yerleştirerek çift açıların sinüs ve kosinüs formüllerini elde ederiz:

  1. Çift açının sinüsü: günah2a = günah(a+a) = günahAçünküA+çünküAgünahA = 2günahAçünküA
  2. Çift açının kosinüsü: çünkü2a = çünkü(a+a) = çünküAçünküA-günahAgünahA = çünkü2 bir-günah2 bir

Diğer çoklu açıların formülleri de benzer şekilde elde edilir:

  1. Üçlü açının sinüsü: günah3 A = günah(2a+a) = günah2açünküA+çünkü2agünahA = (2günahAçünküA)çünküA+(çünkü2 bir-günah2 bir)günahA = 2günahAçünkü2 bir+günahAçünkü2 bir-günah 3 bir = 3 günahAçünkü2 bir-günah 3 bir = 3 günahA(1-günah2 bir)-günah 3 bir = 3 günahA-4günah 3 A
  2. Üçlü açının kosinüsü: çünkü3 A = çünkü(2a+a) = çünkü2açünküA-günah2agünahA = (çünkü2 bir-günah2 bir)çünküA-(2günahAçünküA)günahA = çünkü 3 A- günah2 birçünküA-2günah2 birçünküA = çünkü 3 a-3 günah2 birçünküA = çünkü 3 a-3(1- çünkü2 bir)çünküA = 4çünkü 3 a-3 çünküA

Devam etmeden önce bir soruna bakalım.
Verilen: açı dardır.
Eğer kosinüsünü bulun
Bir öğrencinin verdiği çözüm:
Çünkü , O günahA= 3,a çünküA = 4.
(Matematik mizahından)

Dolayısıyla tanjantın tanımı bu fonksiyonu hem sinüs hem de kosinüs ile ilişkilendirir. Ancak teğeti yalnızca kosinüsle ilişkilendiren bir formül elde edebilirsiniz. Bunu türetmek için ana trigonometrik özdeşliği alıyoruz: günah 2 A+çünkü 2 A= 1 ve bunu böl çünkü 2 A. Şunu elde ederiz:

Yani bu sorunun çözümü şöyle olacaktır:

(Açı dar olduğundan kök çıkartılırken + işareti alınır)

Bir toplamın tanjant formülü hatırlanması zor olan başka bir formüldür. Şu şekilde çıktısını alalım:

Hemen görüntülenir ve

Çift açı için kosinüs formülünden yarım açılar için sinüs ve kosinüs formüllerini elde edebilirsiniz. Bunu yapmak için çift açılı kosinüs formülünün sol tarafına:
çünkü2 A = çünkü 2 A-günah 2 A
bir tane ekliyoruz ve sağa - bir trigonometrik birim, yani. sinüs ve kosinüs karelerinin toplamı.
çünkü2a+1 = çünkü2 bir-günah2 bir+çünkü2 bir+günah2 bir
2çünkü 2 A = çünkü2 A+1
İfade etme çünküA başından sonuna kadar çünkü2 A ve değişkenleri değiştirerek şunu elde ederiz:

İşaret çeyreğe bağlı olarak alınır.

Benzer şekilde eşitliğin sol tarafından bir ve sağdan sinüs ve kosinüs karelerinin toplamından bir çıkardığımızda şunu elde ederiz:
çünkü2a-1 = çünkü2 bir-günah2 bir-çünkü2 bir-günah2 bir
2günah 2 A = 1-çünkü2 A

Son olarak trigonometrik fonksiyonların toplamını çarpıma dönüştürmek için aşağıdaki tekniği kullanıyoruz. Diyelim ki sinüslerin toplamını bir çarpım olarak temsil etmemiz gerekiyor günahA+günahB. a = x+y, b+x-y olacak şekilde x ve y değişkenlerini tanıtalım. Daha sonra
günahA+günahB = günah(x+y)+ günah(x-y) = günah X çünkü y+ çünkü X günah y+ günah X çünkü y- çünkü X günah y=2 günah X çünkü y. Şimdi x ve y'yi a ve b cinsinden ifade edelim.

a = x+y, b = x-y olduğundan, o zaman . Bu yüzden

Hemen geri çekilebilirsiniz

  1. Bölümlendirme formülü sinüs ve kosinüs çarpımları V miktar: günahAçünküB = 0.5(günah(a+b)+günah(a-b))

Sinüslerin farkını ve kosinüslerin toplamını ve farkını çarpıma dönüştürmek, sinüs ve kosinüslerin çarpımlarını toplama bölmek için kendi başınıza pratik yapmanızı ve formüller türetmenizi öneririz. Bu alıştırmaları tamamladıktan sonra, trigonometrik formülleri türetme becerisinde iyice ustalaşacak ve en zor testlerde, olimpiyatlarda veya testlerde bile kaybolmayacaksınız.

Trigonometrik kimlikler- bunlar, bir açının sinüs, kosinüs, tanjant ve kotanjantı arasında bağlantı kuran ve diğerlerinin bilinmesi koşuluyla bu işlevlerden herhangi birini bulmanızı sağlayan eşitliklerdir.

tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

tg \alpha \cdot ctg \alpha = 1

Bu kimlik, bir açının sinüsünün karesi ile bir açının kosinüsünün karesinin toplamının bire eşit olduğunu söyler; bu, pratikte, kosinüsü bilindiğinde bir açının sinüsünü hesaplamayı mümkün kılar ve bunun tersi de geçerlidir. .

Trigonometrik ifadeleri dönüştürürken, bu kimlik sıklıkla kullanılır; bu, bir açının kosinüs ve sinüsünün karelerinin toplamını bir ile değiştirmenize ve ayrıca değiştirme işlemini gerçekleştirmenize olanak tanır. Ters sipariş.

Sinüs ve kosinüs kullanarak teğet ve kotanjantı bulma

tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

Bu kimlikler sinüs, kosinüs, tanjant ve kotanjant tanımlarından oluşur. Sonuçta, eğer ona bakarsanız, tanım gereği y ordinatı bir sinüstür ve apsis x bir kosinüstür. O zaman teğet orana eşit olacaktır \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha) ve oran \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- bir kotanjant olacaktır.

Şunu da ekleyelim ki, ancak içerdikleri trigonometrik fonksiyonların anlamlı olduğu \alpha açıları için özdeşlikler geçerli olacaktır, ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

Örneğin: tg \alpha = \frac(\sin \alpha)(\cos \alpha) farklı olan \alpha açıları için geçerlidir \frac(\pi)(2)+\pi z, A ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- \pi z dışında bir \alpha açısı için z bir tamsayıdır.

Teğet ve kotanjant arasındaki ilişki

tg \alpha \cdot ctg \alpha=1

Bu özdeşlik yalnızca farklı olan \alpha açıları için geçerlidir. \frac(\pi)(2) z. Aksi takdirde kotanjant veya tanjant belirlenmeyecektir.

Yukarıdaki noktalara dayanarak şunu elde ederiz: tg \alpha = \frac(y)(x), A ctg \alpha=\frac(x)(y). Şunu takip ediyor tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Dolayısıyla aynı açının anlamlı olduğu tanjant ve kotanjant karşılıklı olarak ters sayılardır.

Teğet ve kosinüs, kotanjant ve sinüs arasındaki ilişkiler

tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- \alfa açısı ile 1'in tanjantının karesinin toplamı, bu açının kosinüsünün ters karesine eşittir. Bu kimlik, dışındaki tüm \alpha için geçerlidir. \frac(\pi)(2)+ \pi z.

1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)- 1 ile \alfa açısının kotanjantının karesinin toplamı sinüsün ters karesine eşittir verilen açı. Bu kimlik \pi z'den farklı herhangi bir \alpha için geçerlidir.

Trigonometrik kimlikleri kullanan problemlerin çözümlerine örnekler

örnek 1

\sin \alpha ve tg \alpha'yı bulun, eğer \cos \alpha=-\frac12 Ve \frac(\pi)(2)< \alpha < \pi ;

Çözümü göster

Çözüm

\sin \alpha ve \cos \alpha fonksiyonları aşağıdaki formülle ilişkilidir \sin^(2)\alpha + \cos^(2) \alpha = 1. Bu formülde yerine koyma \cos \alpha = -\frac12, şunu elde ederiz:

\sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

Bu denklemin 2 çözümü vardır:

\sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

Koşullara göre \frac(\pi)(2)< \alpha < \pi . İkinci çeyrekte sinüs pozitiftir, yani \sin \alpha = \frac(\sqrt 3)(2).

Tan \alpha'yı bulmak için formülü kullanırız tg \alpha = \frac(\sin \alpha)(\cos \alpha)

tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

Örnek 2

\cos \alpha ve ctg \alpha if ve'yi bulun \frac(\pi)(2)< \alpha < \pi .

Çözümü göster

Çözüm

Formülde yerine koyma \sin^(2)\alpha + \cos^(2) \alpha = 1 verilen numara \sin \alpha=\frac(\sqrt3)(2), alıyoruz \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. Bu denklemin iki çözümü var \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

Koşullara göre \frac(\pi)(2)< \alpha < \pi . İkinci çeyrekte kosinüs negatiftir, yani \cos \alpha = -\sqrt\frac14=-\frac12.

Ctg \alpha'yı bulmak için formülü kullanırız ctg \alpha = \frac(\cos \alpha)(\sin \alpha). Karşılık gelen değerleri biliyoruz.

ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).


Bu yazıda nasıl verileceğini göstereceğiz Trigonometride bir açının sinüs, kosinüs, tanjant ve kotanjant tanımları ve sayı. Burada notasyonlardan bahsedeceğiz, girdi örnekleri vereceğiz ve grafiksel çizimler vereceğiz. Sonuç olarak trigonometri ve geometrideki sinüs, kosinüs, tanjant ve kotanjant tanımları arasında bir paralellik kuralım.

Sayfada gezinme.

Sinüs, kosinüs, tanjant ve kotanjantın tanımı

Bir okul matematik dersinde sinüs, kosinüs, tanjant ve kotanjant fikrinin nasıl oluştuğunu görelim. Geometri derslerinde dik üçgende dar bir açının sinüs, kosinüs, tanjant ve kotanjantının tanımı verilmektedir. Daha sonra dönme açısının ve sayısının sinüs, kosinüs, teğet ve kotanjantından bahseden trigonometri incelenir. Tüm bu tanımları sunalım, örnekler verelim ve gerekli yorumları verelim.

Dik üçgende dar açı

Geometri dersinden dik üçgendeki dar açının sinüs, kosinüs, tanjant ve kotanjantının tanımlarını biliyoruz. Bir dik üçgenin kenarlarının oranı olarak verilirler. Formülasyonlarını verelim.

Tanım.

Dik üçgende dar açının sinüsü karşı kenarın hipotenüse oranıdır.

Tanım.

Dik üçgende dar açının kosinüsü bitişik bacağın hipotenüse oranıdır.

Tanım.

Bir dik üçgende dar bir açının tanjantı– karşı tarafın bitişik tarafa oranıdır.

Tanım.

Bir dik üçgende dar açının kotanjantı- bu, bitişik tarafın karşı tarafa oranıdır.

Sinüs, kosinüs, tanjant ve kotanjant tanımları da burada tanıtılmıştır - sırasıyla sin, cos, tg ve ctg.

Örneğin, ABC dik açılı bir dik üçgense, A dar açısının sinüsü karşı BC kenarının AB hipotenüsüne oranına eşittir, yani sin∠A=BC/AB.

Bu tanımlar, bir dik üçgenin kenarlarının bilinen uzunluklarından ve ayrıca bir akut açının sinüs, kosinüs, tanjant ve kotanjant değerlerini hesaplamanıza olanak tanır. bilinen değerler Sinüs, kosinüs, tanjant, kotanjant ve kenarlardan birinin uzunluğunu kullanarak diğer kenarların uzunluklarını bulun. Örneğin, bir dik üçgende AC kenarının 3'e ve AB hipotenüsünün 7'ye eşit olduğunu bilseydik, dar açı A'nın kosinüsünün değerini tanım gereği hesaplayabilirdik: cos∠A=AC/ AB=3/7.

Dönüş açısı

Trigonometride açıya daha geniş bakmaya başlarlar - dönme açısı kavramını tanıtırlar. Dönme açısının büyüklüğü, dar açıdan farklı olarak 0 ila 90 derece ile sınırlı değildir; derece cinsinden (ve radyan cinsinden) dönme açısı -∞'dan +∞'a kadar herhangi bir gerçek sayı ile ifade edilebilir.

Bu açıdan sinüs, kosinüs, tanjant ve kotanjant tanımları dar bir açıya göre değil, isteğe bağlı büyüklükte bir açıya (dönme açısına) göre verilmiştir. Bunlar, dikdörtgen Kartezyen koordinat sisteminin başlangıcı olan O noktası etrafında bir α açısı kadar döndükten sonra sözde başlangıç ​​noktası A(1, 0)'ın gittiği A 1 noktasının x ve y koordinatları aracılığıyla verilir. ve birim çemberin merkezi.

Tanım.

Dönme açısının sinüsüα, A1 noktasının koordinatıdır, yani sinα=y.

Tanım.

Dönme açısının kosinüsüα'ya A 1 noktasının apsisi denir, yani cosα=x.

Tanım.

Dönme açısının tanjantıα, A1 noktasının ordinatının apsisine oranıdır, yani tanα=y/x.

Tanım.

Dönme açısının kotanjantıα, A1 noktasının apsisinin ordinatına oranıdır, yani ctgα=x/y.

Sinüs ve kosinüs herhangi bir α açısı için tanımlanır, çünkü başlangıç ​​noktasının α açısı kadar döndürülmesiyle elde edilen noktanın apsisini ve ordinatını her zaman belirleyebiliriz. Ancak teğet ve kotanjant herhangi bir açı için tanımlanmamıştır. Başlangıç ​​noktasının sıfır apsisli (0, 1) veya (0, −1) bir noktaya gittiği α açıları için tanjant tanımlanmamıştır ve bu, 90°+180° k, k∈Z (π) açılarında meydana gelir. /2+π·k rad). Nitekim bu tür dönme açılarında tgα=y/x ifadesi sıfıra bölünmeyi içerdiğinden bir anlam ifade etmemektedir. Kotanjanta gelince, başlangıç ​​noktasının sıfır koordinatlı (1, 0) veya (−1, 0) noktaya gittiği α açıları için tanımlanmamıştır ve bu, 180° k, k ∈Z açıları için meydana gelir. (π·k rad).

Yani herhangi bir dönme açısı için sinüs ve kosinüs tanımlanır, 90°+180°k hariç tüm açılar için teğet tanımlanır, k∈Z (π/2+πk rad) ve 180° ·k hariç tüm açılar için kotanjant tanımlanır , k∈Z (π·k rad).

Tanımlar, bizim tarafımızdan zaten bilinen sin, cos, tg ve ctg tanımlarını içerir; bunlar aynı zamanda sinüs, kosinüs, teğet ve dönme açısının kotanjantını belirtmek için de kullanılır (bazen tan ve cot tanımlarını teğet ve kotanjanta karşılık gelen olarak bulabilirsiniz) . Dolayısıyla 30 derecelik bir dönme açısının sinüsü sin30° olarak yazılabilir, tg(−24°17') ve ctgα girdileri −24 derece 17 dakika dönme açısının tanjantına ve dönme açısı α'nın kotanjantına karşılık gelir. . Bir açının radyan ölçüsünü yazarken "rad" ifadesinin sıklıkla atlandığını hatırlayın. Örneğin, üç pi rad'lık bir dönme açısının kosinüsü genellikle cos3·π olarak gösterilir.

Bu noktanın sonucu olarak, dönme açısının sinüs, kosinüs, tanjant ve kotanjantından bahsederken "dönme açısı" ifadesinin veya "dönme" kelimesinin sıklıkla atlandığını belirtmekte fayda var. Yani, "dönme açısı alfanın sinüsü" ifadesi yerine genellikle "alfa açısının sinüsü" veya daha kısası "sinüs alfa" ifadesi kullanılır. Aynı durum kosinüs, teğet ve kotanjant için de geçerlidir.

Ayrıca bir dik üçgende bir dar açının sinüs, kosinüs, tanjant ve kotanjant tanımlarının, 0 ila 90 derece arasındaki bir dönme açısının sinüs, kosinüs, tanjant ve kotanjantı için verilen tanımlarla tutarlı olduğunu söyleyeceğiz. Bunu meşrulaştıracağız.

Sayılar

Tanım.

Bir sayının sinüs, kosinüs, tanjant ve kotanjantı t, dönme açısının sırasıyla t radyan cinsinden sinüs, kosinüs, tanjant ve kotanjantına eşit bir sayıdır.

Örneğin, 8·π sayısının kosinüsü, tanım gereği, 8·π rad açısının kosinüsüne eşit bir sayıdır. Ve 8·π rad açısının kosinüsü bire eşittir, dolayısıyla 8·π sayısının kosinüsü 1'e eşittir.

Bir sayının sinüsünü, kosinüsünü, tanjantını ve kotanjantını belirlemeye yönelik başka bir yaklaşım daha vardır. Her t gerçek sayısının, dikdörtgen koordinat sisteminin başlangıcında merkezi olan birim çember üzerindeki bir nokta ile ilişkilendirilmesi ve sinüs, kosinüs, teğet ve kotanjantın bu noktanın koordinatları aracılığıyla belirlenmesinden oluşur. Buna daha detaylı bakalım.

Gerçek sayılar ile çember üzerindeki noktalar arasında nasıl bir ilişki kurulduğunu gösterelim:

  • 0 sayısına A(1, 0) başlangıç ​​noktası atanır;
  • pozitif sayı t, başlangıç ​​noktasından saat yönünün tersine daire boyunca hareket edersek ve t uzunluğunda bir yolda yürürsek ulaşacağımız birim dairenin noktasıyla ilişkilidir;
  • negatif sayı t birim çemberin noktasıyla ilişkilidir; başlangıç ​​noktasından itibaren daire boyunca saat yönünde hareket edersek ve |t| uzunluğunda bir yolda yürürsek bu noktaya ulaşacağız. .

Şimdi t sayısının sinüs, kosinüs, tanjant ve kotanjant tanımlarına geçiyoruz. t sayısının A 1 (x, y) çemberi üzerindeki bir noktaya karşılık geldiğini varsayalım (örneğin &pi/2; sayısı A 1 (0, 1) noktasına karşılık gelir).

Tanım.

Sayının sinüsü t, birim çember üzerinde t sayısına karşılık gelen noktanın koordinatıdır, yani sint=y.

Tanım.

Sayının kosinüsü t'ye birim çemberin t sayısına karşılık gelen noktasının apsisi denir, yani maliyet=x.

Tanım.

Sayının tanjantı t, birim çember üzerinde t sayısına karşılık gelen bir noktanın ordinatının apsisine oranıdır, yani tgt=y/x. Başka bir eşdeğer formülasyonda, bir t sayısının tanjantı, bu sayının sinüsünün kosinüsüne oranıdır, yani tgt=sint/maliyettir.

Tanım.

Sayının kotanjantı t, apsisin birim çember üzerindeki t sayısına karşılık gelen bir noktanın ordinatına oranıdır, yani ctgt=x/y. Başka bir formülasyon şudur: t sayısının tanjantı, t sayısının kosinüsünün t sayısının sinüsüne oranıdır: ctgt=maliyet/sint.

Burada az önce verilen tanımların bu paragrafın başında verilen tanımla tutarlı olduğunu görüyoruz. Aslında birim çember üzerinde t sayısına karşılık gelen nokta, başlangıç ​​noktasının t radyan açısı kadar döndürülmesiyle elde edilen nokta ile çakışmaktadır.

Bu noktayı yine de açıklığa kavuşturmakta fayda var. Diyelim ki sin3 girişimiz var. 3 sayısının sinüsünden mi, yoksa 3 radyanlık dönme açısının sinüsünden mi bahsettiğimizi nasıl anlayabiliriz? Bu genellikle bağlamdan açıkça anlaşılır, aksi halde muhtemelen temel bir öneme sahip değildir.

Açısal ve sayısal argümanın trigonometrik fonksiyonları

Önceki paragrafta verilen tanımlara göre, her bir dönme açısı α, cosα değerinin yanı sıra çok spesifik bir sinα değerine de karşılık gelir. Ayrıca 90°+180°k, k∈Z (π/2+πk rad) dışındaki tüm dönüş açıları tgα değerlerine, 180°k dışındaki tüm dönüş açıları ise k∈Z (πk rad ) – değerlere karşılık gelir. ctga'dan. Bu nedenle sinα, cosα, tanα ve ctgα, α açısının fonksiyonlarıdır. Başka bir deyişle bunlar açısal argümanın işlevleridir.

Sayısal bir argümanın sinüs, kosinüs, tanjant ve kotanjant fonksiyonları hakkında da benzer şekilde konuşabiliriz. Gerçekte, her t gerçek sayısı, maliyete ek olarak çok spesifik bir sint değerine karşılık gelir. Ek olarak, π/2+π·k, k∈Z dışındaki tüm sayılar tgt değerlerine ve π·k, k∈Z sayıları - ctgt değerlerine karşılık gelir.

Sinüs, kosinüs, tanjant ve kotanjant fonksiyonlarına denir temel trigonometrik fonksiyonlar.

Açısal bir argümanın trigonometrik fonksiyonlarıyla mı yoksa sayısal bir argümanla mı uğraştığımız bağlamdan genellikle açıktır. Aksi takdirde bağımsız değişkeni hem açının bir ölçüsü (açısal argüman) hem de sayısal bir argüman olarak düşünebiliriz.

Ancak okulda esas olarak sayısal fonksiyonları, yani argümanları ve karşılık gelen fonksiyon değerleri sayı olan fonksiyonları inceliyoruz. Bu nedenle eğer Hakkında konuşuyoruzözellikle fonksiyonlarla ilgili olarak, trigonometrik fonksiyonların sayısal argümanların fonksiyonları olarak dikkate alınması tavsiye edilir.

Geometri ve trigonometri tanımları arasındaki ilişki

Dönme açısı α'nın 0 ila 90 derece arasında değiştiğini düşünürsek, trigonometri bağlamında dönme açısının sinüs, kosinüs, tanjant ve kotanjant tanımları bir sinüs, kosinüs, tanjant ve kotanjant tanımlarıyla tamamen tutarlıdır. Geometri dersinde verilen dik üçgende dar açı. Bunu meşrulaştıralım.

Birim çemberi dikdörtgen Kartezyen koordinat sistemi Oxy'de gösterelim. Başlangıç ​​noktasını A(1, 0) olarak işaretleyelim. Bunu 0 ila 90 derece arasında değişen bir α açısı kadar döndürelim, A 1 (x, y) noktasını elde ederiz. A 1 H dikmesini A 1 noktasından Ox eksenine bırakalım.

Dik bir üçgende A 1 OH açısının a dönme açısına eşit olduğunu, bu açıya bitişik OH bacağının uzunluğunun A 1 noktasının apsisine eşit olduğunu, yani |OH olduğunu görmek kolaydır. |=x, açının karşısındaki A 1 H kenarının uzunluğu A 1 noktasının ordinatına eşittir, yani |A 1 H|=y ve OA 1 hipotenüsünün uzunluğu bire eşittir, Çünkü birim çemberin yarıçapıdır. Bu durumda, geometri tanımı gereği, bir A 1 OH dik üçgenindeki bir α dar açısının sinüsü, karşı kenarın hipotenüse oranına eşittir, yani sinα=|A 1 H|/|OA 1 |= y/1=y. Ve trigonometrinin tanımı gereği, dönme açısı a'nın sinüsü A1 noktasının ordinatına eşittir, yani sinα=y. Bu, bir dik üçgende bir dar açının sinüsünü belirlemenin, α 0 ila 90 derece arasında olduğunda dönme açısı α'nın sinüsünü belirlemeye eşdeğer olduğunu gösterir.

Benzer şekilde, bir a dar açısının kosinüs, tanjant ve kotanjant tanımlarının, a dönme açısının kosinüs, tanjant ve kotanjant tanımlarıyla tutarlı olduğu gösterilebilir.

Kaynakça.

  1. Geometri. 7-9 sınıflar: ders kitabı genel eğitim için kurumlar / [L. S. Atanasyan, V. F. Butuzov, S. B. Kadomtsev, vb.]. - 20. baskı. M.: Eğitim, 2010. - 384 s.: hasta. - ISBN 978-5-09-023915-8.
  2. Pogorelov A.V. Geometri: Ders Kitabı. 7-9 sınıflar için. Genel Eğitim kurumlar / A.V. Pogorelov. - 2. baskı - M.: Eğitim, 2001. - 224 s.: hasta. - ISBN 5-09-010803-X.
  3. Cebir ve temel işlevler : 9. sınıf öğrencileri için ders kitabı lise/ E. S. Kochetkov, E. S. Kochetkova; Düzenleyen: Fiziksel ve Matematik Bilimleri Doktoru O. N. Golovin - 4. baskı. M.: Eğitim, 1969.
  4. Cebir: Ders Kitabı 9. sınıf için. ortalama okul / Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky. - M .: Eğitim, 1990. - 272 s.: - ISBN 5-09-002727-7.
  5. Cebir ve analizin başlangıcı: Proc. 10-11 sınıflar için. Genel Eğitim kurumlar / A.N. Kolmogorov, A.M. Abramov, Yu.P. Dudnitsyn ve diğerleri; Ed. A. N. Kolmogorov - 14. baskı - M.: Eğitim, 2004. - 384 s.: - ISBN 5-09-013651-3.
  6. Mordkoviç A.G. Cebir ve analizin başlangıcı. Sınıf 10. Saat 2'de Bölüm 1: öğretici. Eğitim Kurumları(profil düzeyi)/ A. G. Mordkovich, P. V. Semenov. - 4. baskı, ekleyin. - M.: Mnemosyne, 2007. - 424 s.: hasta. ISBN 978-5-346-00792-0.
  7. Cebir ve matematiksel analizin başlangıcı. 10. sınıf: ders kitabı. genel eğitim için kurumlar: temel ve profil. seviyeler /[Yu. M. Kolyagin, M.V. Tkacheva, N.E. Fedorova, M.I. Shabunin]; tarafından düzenlendi A. B. Zhizhchenko. - 3. baskı. - I.: Eğitim, 2010.- 368 s.: hasta.- ISBN 978-5-09-022771-1.
  8. Bashmakov M. I. Cebir ve analizin başlangıcı: Ders kitabı. 10-11 sınıflar için. ortalama okul - 3. baskı. - M.: Eğitim, 1993. - 351 s.: hasta. - ISBN 5-09-004617-4.
  9. Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı): Proc. ödenek.- M.; Daha yüksek okul, 1984.-351 s., hasta.

Bu yazımızda kapsamlı bir inceleme yapacağız. Temel trigonometrik özdeşlikler bir açının sinüs, kosinüs, tanjant ve kotanjantı arasında bağlantı kuran ve bilinen bir diğeri aracılığıyla bu trigonometrik fonksiyonlardan herhangi birinin bulunmasına olanak tanıyan eşitlikleri temsil eder.

Bu yazımızda analiz edeceğimiz ana trigonometrik özdeşlikleri hemen listeleyelim. Bunları bir tablo halinde yazalım ve aşağıda bu formüllerin çıktılarını verip gerekli açıklamaları yapacağız.

Sayfada gezinme.

Bir açının sinüsü ve kosinüsü arasındaki ilişki

Bazen yukarıdaki tabloda listelenen ana trigonometrik özdeşlikler hakkında değil, tek bir tane hakkında konuşurlar. temel trigonometrik kimlik tür . Bu gerçeğin açıklaması oldukça basittir: Eşitlikler, ana trigonometrik özdeşliğin her iki parçasını sırasıyla ve'ye bölerek elde edilir ve eşitlikler Ve sinüs, kosinüs, tanjant ve kotanjant tanımlarından takip edin. Bunu aşağıdaki paragraflarda daha ayrıntılı olarak konuşacağız.

Yani, ana trigonometrik özdeşliğin adı verilen, özellikle ilgi çekici olan eşitliktir.

Ana trigonometrik özdeşliği kanıtlamadan önce formülasyonunu veriyoruz: bir açının sinüs ve kosinüsünün karelerinin toplamı aynı şekilde bire eşittir. Şimdi bunu kanıtlayalım.

Temel trigonometrik özdeşlik şu durumlarda sıklıkla kullanılır: trigonometrik ifadeleri dönüştürme. Bir açının sinüs ve kosinüsünün karelerinin toplamının bir ile değiştirilmesine olanak sağlar. Daha az sıklıkla, temel trigonometrik özdeşlik ters sırada kullanılır: birimin yerini herhangi bir açının sinüs ve kosinüsünün karelerinin toplamı alır.

Sinüs ve kosinüs yoluyla teğet ve kotanjant

Bir bakış açısının sinüs ve kosinüsü ile teğet ve kotanjantı birleştiren kimlikler ve sinüs, kosinüs, tanjant ve kotanjant tanımlarından hemen yararlanın. Aslında, tanım gereği sinüs, y'nin ordinatıdır, kosinüs, x'in apsisidir, teğet, ordinatın apsise oranıdır, yani, ve kotanjant apsisin koordinata oranıdır, yani, .

Kimliklerin bu kadar açık olması sayesinde Teğet ve kotanjant genellikle apsis ve ordinat oranıyla değil, sinüs ve kosinüs oranıyla tanımlanır. Yani bir açının tanjantı, sinüsün bu açının kosinüsüne oranıdır ve kotanjant da kosinüsün sinüse oranıdır.

Bu paragrafın sonunda belirtmek gerekir ki, kimlikler ve İçerdiği trigonometrik fonksiyonların anlamlı olduğu tüm açılarda gerçekleşir. Yani formül, (aksi takdirde payda sıfır olur ve sıfıra bölmeyi tanımlamadık) dışında herhangi biri için geçerlidir ve formül - hepsi için, farklı, burada z herhangi bir değerdir.

Teğet ve kotanjant arasındaki ilişki

Önceki ikisinden daha belirgin bir trigonometrik özdeşlik, formun bir açısının teğetini ve kotanjantını birleştiren özdeşliktir. . Bunun dışındaki tüm açılar için geçerli olduğu açıktır, aksi takdirde teğet veya kotanjant tanımlanmaz.

Formülün kanıtı Çok basit. Tanım gereği ve nereden . Kanıt biraz daha farklı bir şekilde gerçekleştirilebilirdi. O zamandan beri , O .

Yani anlamlı oldukları aynı açının teğet ve kotanjantı .