Kosinüs oranı. Temel trigonometrik özdeşlikler, formülasyonları ve türetilmesi

Tasarım, dekor

4 Kişilik Birleşik Devlet Sınavı? Mutluluktan patlamayacak mısın?

Soru ilginç diyorlar... Mümkün, 4'le geçmek mümkün! Ve aynı zamanda patlamamak için... Asıl şart düzenli egzersiz yapmaktır. İşte matematikte Birleşik Devlet Sınavı için temel hazırlık. Birleşik Devlet Sınavının ders kitaplarında okumayacağınız tüm sırları ve gizemleriyle... Bu bölümü inceleyin, daha fazla görevi çözün çeşitli kaynaklar- ve her şey yoluna girecek! Temel bölümün "A C size yeter!" size herhangi bir sorun yaratmaz. Ama aniden... Bağlantıları takip edin, tembel olmayın!

Ve harika ve korkunç bir konuyla başlayacağız.

Trigonometri

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Bu konu öğrenciler için birçok soruna neden olmaktadır. En şiddetli olanlardan biri olarak kabul edilir. Sinüs ve kosinüs nedir? Teğet ve kotanjant nedir? Sayı çemberi nedir? Bu zararsız soruları sorduğunuzda kişinin rengi sararır ve konuyu başka yöne çekmeye çalışır... Ama nafile. Bunlar basit kavramlardır. Ve bu konu diğerlerinden daha zor değil. Sadece bu soruların cevaplarını en başından beri açıkça anlamanız gerekiyor. Bu çok önemli. Anlıyorsanız trigonometriyi seveceksiniz. Bu yüzden,

Sinüs ve kosinüs nedir? Teğet ve kotanjant nedir?

Antik çağlardan başlayalım. Merak etmeyin, yaklaşık 15 dakikada 20 asırlık trigonometriyi inceleyeceğiz ve farkına bile varmadan 8. sınıftan bir geometri parçasını tekrarlayacağız.

Kenarları olan bir dik üçgen çizelim a, b, c ve açı X. İşte burada.

Dik açı oluşturan kenarlara bacak denildiğini hatırlatayım. a ve c– bacaklar. İki tane var. Kalan kenara hipotenüs denir. İle– hipotenüs.

Üçgen ve üçgen, bir düşünün! Onunla ne yapmalı? Ama eski insanlar ne yapacaklarını biliyorlardı! Eylemlerini tekrarlayalım. Kenarını ölçelim V. Şekilde hücreler şekildeki gibi özel olarak çizilmiştir. Birleşik Devlet Sınavı atamaları Olur. Taraf V dört hücreye eşittir. TAMAM. Kenarını ölçelim A.Üç hücre.

Şimdi kenar uzunluğunu bölelim A kenar uzunluğu başına V. Ya da onların da dediği gibi tavrımızı alalım Aİle V. a/v= 3/4.

Tam tersi bölebilirsiniz V Açık A. 4/3 elde ederiz. Olabilmek V bölünür İle. Hipotenüs İle Hücrelere göre saymak imkansız ama 5'e eşit. yüksek kalite= 4/5. Kısacası kenar uzunluklarını birbirine bölerek bazı sayılar elde edebilirsiniz.

Ne olmuş? Bu ilginç aktivitenin amacı nedir? Henüz yok. Açıkça söylemek gerekirse anlamsız bir egzersiz.)

Şimdi bunu yapalım. Üçgeni genişletelim. Kenarları uzatalım içinde ve yanında ancak üçgen dikdörtgen kalacak şekilde. Köşe X elbette değişmez. Bunu görmek için farenizi resmin üzerine getirin veya resme dokunun (tabletiniz varsa). Partiler a, b ve c dönüşecek m, n, k ve elbette kenarların uzunlukları değişecektir.

Ama ilişkileri öyle değil!

Davranış a/vşuydu: a/v= 3/4, oldu a/n= 6/8 = 3/4. Diğer ilgili tarafların ilişkileri de değişmeyecek . Kenar uzunluklarını dilediğiniz gibi değiştirebilirsiniz. dik üçgen, artış azalış, x açısını değiştirmedenİlgili taraflar arasındaki ilişki değişmeyecek . Kontrol edebilirsiniz ya da eski insanların sözlerine güvenebilirsiniz.

Ama bu zaten çok önemli! Bir dik üçgende kenarların oranları hiçbir şekilde kenarların uzunluklarına (aynı açıda) bağlı değildir. Bu o kadar önemlidir ki, taraflar arasındaki ilişki kendine özel bir isim kazanmıştır. Tabiri caizse isimleriniz.) Buluşalım benimle.

x açısının sinüsü nedir ? Bu karşı tarafın hipotenüse oranıdır:

sinx = klima

x açısının kosinüsü nedir ? Bu, bitişik bacağın hipotenüse oranıdır:

İleosx= yüksek kalite

Teğet x nedir ? Bu, karşı tarafın bitişik tarafa oranıdır:

tgx =a/v

x açısının kotanjantı nedir ? Bu, bitişik tarafın karşı tarafa oranıdır:

ctgx = v/a

Her şey çok basit. Sinüs, kosinüs, teğet ve kotanjant bazı sayılardır. Boyutsuz. Sadece sayılar. Her açının kendine ait bir açısı vardır.

Neden her şeyi bu kadar sıkıcı bir şekilde tekrarlıyorum? O zaman bu nedir hatırlamam gerek. Hatırlamak önemlidir. Ezberleme daha kolay hale getirilebilir. “Uzaktan başlayalım…” sözü tanıdık mı? O halde uzaktan başlayın.

Sinüs açı bir orandır mesafe bacak açısından hipotenüse kadar. Kosinüs– komşunun hipotenüse oranı.

Teğet açı bir orandır mesafe bacak açısından yakın olana. Kotanjant- tersine.

Daha kolay, değil mi?

Pekala, teğet ve kotanjantta yalnızca bacakların olduğunu ve sinüs ve kosinüste hipotenüsün göründüğünü hatırlarsanız, o zaman her şey oldukça basit hale gelecektir.

Bütün bu muhteşem aileye - sinüs, kosinüs, teğet ve kotanjant da denir trigonometrik fonksiyonlar.


Şimdi dikkate alınması gereken bir soru.

Neden sinüs, kosinüs, teğet ve kotanjant diyoruz? köşe? Tarafların arasındaki ilişkiden bahsediyoruz mesela... Ne alakası var? köşe?

İkinci resme bakalım. İlkinin tamamen aynısı.

Farenizi resmin üzerine getirin. Açıyı değiştirdim X. Arttırıldı x'ten x'e. Tüm ilişkiler değişti! Davranış a/v 3/4 idi ve buna karşılık gelen oran televizyon 6/4 oldu.

Ve diğer tüm ilişkiler farklılaştı!

Bu nedenle, kenarların oranları hiçbir şekilde uzunluklarına (bir x açısına) bağlı değildir, ancak keskin bir şekilde bu açıya bağlıdır! Ve sadece ondan. Bu nedenle sinüs, kosinüs, tanjant ve kotanjant terimleri şu anlama gelir: köşe. Buradaki açı ana açıdır.

Açının trigonometrik fonksiyonlarıyla ayrılmaz bir şekilde bağlantılı olduğu açıkça anlaşılmalıdır. Her açının kendi sinüsü ve kosinüsü vardır. Ve neredeyse herkesin kendi teğet ve kotanjantı vardır. Bu önemli. Bize bir açı verilirse bunun sinüs, kosinüs, teğet ve kotanjantının olduğuna inanılıyor. biliyoruz ! Ve tam tersi. Bir sinüs veya başka bir trigonometrik fonksiyon verildiğinde, bu açıyı bildiğimiz anlamına gelir.

Her açı için trigonometrik fonksiyonların açıklandığı özel tablolar vardır. Bunlara Bradis tabloları denir. Çok uzun zaman önce derlenmişlerdi. Henüz hesap makineleri ve bilgisayarlar yokken...

Elbette tüm açıların trigonometrik fonksiyonlarını hatırlamak mümkün değildir. Bunları yalnızca birkaç açıdan bilmeniz gerekir; bu konuya daha sonra değineceğiz. Ama büyü Bir açıyı biliyorum, bu da onun trigonometrik fonksiyonlarını bildiğim anlamına geliyor” - her zaman çalışır!

Böylece 8. sınıftan bir geometri parçasını tekrarladık. Birleşik Devlet Sınavı için buna ihtiyacımız var mı? Gerekli. İşte Birleşik Devlet Sınavından tipik bir sorun. Bu sorunu çözmek için 8. sınıf yeterli. Verilen resim:

Tüm. Başka veri yok. Uçağın yan uzunluğunu bulmamız gerekiyor.

Hücrelerin pek bir faydası olmuyor, üçgen bir şekilde yanlış konumlandırılmış.... Bilerek sanırım... Bilgilere göre hipotenüsün uzunluğu var. 8 hücre. Nedense açı verilmiş.

Trigonometriyi hemen hatırlamanız gereken yer burasıdır. Bir açı var, yani onun tüm trigonometrik fonksiyonlarını biliyoruz. Dört fonksiyondan hangisini kullanmalıyız? Bakalım ne biliyoruz? Hipotenüsü ve açıyı biliyoruz ama bulmamız gerekiyor. bitişik kateteri bu köşeye! Açıktır ki, kosinüsün devreye sokulması gerekiyor! İşte başlıyoruz. Basitçe kosinüs tanımıyla yazıyoruz (oran bitişik bacaktan hipotenüse):

cosC = BC/8

C açımız 60 derece, kosinüsü 1/2. Bunu bilmeniz gerekiyor, tablolar olmadan! Yani:

1/2 = MÖ/8

İlköğretim Doğrusal Denklem. Bilinmeyen - Güneş. Denklem çözmeyi unutanlar linke bir baksın, gerisi çözsün:

MÖ = 4

Eski insanlar her açının kendine ait trigonometrik fonksiyonları olduğunu fark ettiklerinde akıllarına mantıklı bir soru geldi. Sinüs, kosinüs, teğet ve kotanjant bir şekilde birbirleriyle ilişkili midir? Yani bir açı fonksiyonunu bilerek diğerlerini de bulabilir misin? Açının kendisini hesaplamadan mı?

O kadar huzursuzlardı ki...)

Bir açının trigonometrik fonksiyonları arasındaki ilişki.

Elbette aynı açının sinüs, kosinüs, tanjant ve kotanjantı birbiriyle ilişkilidir. İfadeler arasındaki herhangi bir bağlantı matematikte formüllerle verilir. Trigonometride çok sayıda formül vardır. Ancak burada en temel olanlara bakacağız. Bu formüllere şunlar denir: temel trigonometrik kimlikler.İşte buradalar:

Bu formülleri iyice bilmeniz gerekiyor. Onlar olmadan genellikle trigonometride yapılacak hiçbir şey yoktur. Bu temel kimliklerden üç yardımcı kimlik daha ortaya çıkar:

Son üç formülün hafızanızdan hızla silindiği konusunda sizi hemen uyarıyorum. Bazı nedenlerden dolayı.) Elbette bu formülleri şuradan türetebilirsiniz: ilk üç. Ama, içinde Zor zaman... Anladın.)

Aşağıdaki gibi standart problemlerde bu unutulabilir formüllerden kaçınmanın bir yolu vardır. VE hataları önemli ölçüde azaltır unutkanlıktan dolayı ve hesaplamalarda da. Bu uygulama Bölüm 555, "Aynı açıya sahip trigonometrik fonksiyonlar arasındaki ilişkiler" dersinde yer almaktadır.

Temel trigonometrik kimlikler hangi görevlerde ve nasıl kullanılır? En popüler görev, eğer başka bir açı fonksiyonu verilmişse, bir açı fonksiyonu bulmaktır. Birleşik Devlet Sınavında böyle bir görev yıldan yıla mevcuttur.) Örneğin:

Eğer x bir dar açı ve cosx=0,8 ise sinx'in değerini bulun.

Görev neredeyse temeldir. Sinüs ve kosinüs içeren bir formül arıyoruz. İşte formül:

günah 2 x + çünkü 2 x = 1

Burada kosinüs yerine bilinen bir değeri, yani 0,8'i koyuyoruz:

günah 2 x + 0,8 2 = 1

Her zamanki gibi sayıyoruz:

günah 2 x + 0,64 = 1

günah 2 x = 1 - 0,64

Neredeyse hepsi bu. Sinüsün karesini hesapladık, geriye sadece karekökü çıkarmak kaldı ve cevap hazır! 0,36'nın kökü 0,6'dır.

Görev neredeyse temeldir. Ama “neredeyse” kelimesinin bir nedeni var... Gerçek şu ki sinx= - 0.6 cevabı da uygun... (-0.6) 2 de 0.36 olacak.

İki farklı cevap var. Ve birine ihtiyacın var. İkincisi yanlış. Nasıl olunur? Evet, her zamanki gibi.) Ödevi dikkatlice okuyun. Bir sebepten dolayı şöyle diyor:... x bir dar açı ise... Ve görevlerde her kelimenin bir anlamı var evet... Bu cümle çözüm için ek bilgidir.

Dar açı, ölçüsü 90°'den küçük olan açıdır. Ve böyle köşelerde Tüm trigonometrik fonksiyonlar - sinüs, kosinüs ve kotanjant ile teğet - pozitif. Onlar. Buradaki olumsuz cevabı bir kenara atıyoruz. Hakkımız var.

Aslında sekizinci sınıf öğrencilerinin bu tür inceliklere ihtiyacı yok. Yalnızca köşelerin yalnızca dar açı olabildiği dik üçgenlerle çalışırlar. Ve onlar bilmiyorlar, mutlular, hem negatif açılar hem de 1000°'lik açılar var... Ve tüm bu korkunç açıların kendi trigonometrik fonksiyonları var, artı ve eksi...

Ancak lise öğrencileri için işareti dikkate almadan - mümkün değil. Çok bilgi acıları çoğaltır, evet...) Ve doğru karar Görev ek bilgiler içermelidir (gerekirse). Örneğin, aşağıdaki girişle verilebilir:

Veya başka bir şekilde. Aşağıdaki örneklerde göreceksiniz.) Bu tür örnekleri çözmek için bilmeniz gerekenler Verilen x açısı hangi çeyreğe düşüyor ve istenen trigonometrik fonksiyon bu çeyrekte hangi işarete sahip?

Trigonometrinin bu temelleri, trigonometrik dairenin ne olduğu, bu daire üzerindeki açıların ölçümü, bir açının radyan ölçüsü gibi derslerde tartışılmaktadır. Bazen sinüs, kosinüs teğet ve kotanjant tablosunu bilmeniz gerekir.

O halde en önemli şeye dikkat edelim:

Pratik tavsiye:

1. Sinüs, kosinüs, tanjant ve kotanjant tanımlarını hatırlayın. Çok faydalı olacak.

2. Açıkça anlıyoruz: sinüs, kosinüs, teğet ve kotanjant açılarla sıkı bir şekilde bağlantılıdır. Bir şeyi biliyoruz, bu da başka bir şeyi bildiğimiz anlamına geliyor.

3. Açıkça anlıyoruz: Bir açının sinüs, kosinüs, tanjant ve kotanjantı birbirleriyle temel trigonometrik özdeşliklerle ilişkilidir. Bir fonksiyonu biliyoruz, bu da (eğer gerekli ek bilgiye sahipsek) diğerlerini hesaplayabileceğimiz anlamına gelir.

Şimdi her zamanki gibi karar verelim. İlk olarak 8. sınıf kapsamındaki görevler. Ama lise öğrencileri de yapabilir...)

1. CtgA = 0,4 ise tgA'nın değerini hesaplayın.

2. β dik üçgende bir açıdır. sinβ = 12/13 ise tanβ'nın değerini bulun.

3. Sinüs tanımla dar açı x eğer tgх = 4/3 ise.

4. İfadenin anlamını bulun:

6sin 2 5° - 3 + 6cos 2 5°

5. İfadenin anlamını bulun:

(1-cosx)(1+cosx), eğer sinx = 0,3 ise

Cevaplar (noktalı virgülle ayrılmış, dağınık):

0,09; 3; 0,8; 2,4; 2,5

Olmuş? Harika! Sekizinci sınıf öğrencileri şimdiden A notlarını alabilirler.)

Her şey yolunda gitmedi mi? Görev 2 ve 3 bir şekilde pek iyi değil...? Sorun değil! Bu tür görevler için güzel bir teknik var. Her şey pratik olarak formüller olmadan çözülebilir! Ve bu nedenle hatasız. Bu teknik Bölüm 555'teki "Tek açının trigonometrik fonksiyonları arasındaki ilişkiler" dersinde anlatılmaktadır. Diğer tüm görevler de orada ele alınır.

Bunlar Birleşik Devlet Sınavı gibi sorunlardı, ancak sadeleştirilmiş bir versiyonu. Birleşik Devlet Sınavı - hafif). Ve şimdi neredeyse aynı görevler, ancak tam teşekküllü bir formatta. Bilgi yükü taşıyan lise öğrencileri için.)

6. sinβ = 12/13 ise tanβ değerini bulun ve

7. Eğer tgх = 4/3 ve x aralığa aitse (- 540°; - 450°) sinх'ı belirleyin.

8. Ctgβ = 1 ise sinβ cosβ ifadesinin değerini bulun.

Cevaplar (karışıklık içinde):

0,8; 0,5; -2,4.

Burada 6. problemde açı çok açık bir şekilde belirtilmemiş... Ancak 8. problemde hiç belirtilmemiş! Bu bilerek yapılmıştır). Ek bilgiler yalnızca görevden değil, aynı zamanda kafadan da alınır.) Ancak karar verirseniz, tek bir doğru görev garanti edilir!

Peki ya karar vermediyseniz? Hmm... Bölüm 555 burada yardımcı olacaktır. Orada tüm bu görevlerin çözümleri ayrıntılı olarak anlatılıyor, anlamamak zor.

Bu ders trigonometrik fonksiyonların çok sınırlı bir şekilde anlaşılmasını sağlar. 8. sınıf içinde. Ve büyüklerin hala soruları var...

Örneğin, eğer açı X(bu sayfadaki ikinci resme bakın) - aptallaştırın!? Üçgen tamamen parçalanacak! Yani ne yapmalıyız? Bacak olmayacak, hipotenüs olmayacak... Sinüs yok oldu...

Eğer eski insanlar bu durumdan bir çıkış yolu bulmasaydı, şu anda cep telefonumuz, televizyonumuz, elektriğimiz olmayacaktı. Evet evet! Teorik temel trigonometrik fonksiyonlar olmadan tüm bu şeyler çubuk olmadan sıfırdır. Ancak eski insanlar hayal kırıklığına uğratmadı. Nasıl çıktıkları bir sonraki derste.

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

Trigonometri çalışmamıza dik üçgenle başlayacağız. Bir akut açının teğet ve kotanjantının yanı sıra sinüs ve kosinüsün ne olduğunu tanımlayalım. Bu trigonometrinin temelidir.

şunu hatırlatalım dik açı 90 dereceye eşit bir açıdır. Başka bir deyişle, yarım dönmüş bir açı.

Keskin köşe- 90 dereceden az.

Geniş açı- 90 dereceden büyük. Böyle bir açıyla ilgili olarak "geniş" hakaret değil matematiksel bir terimdir :-)

Bir dik üçgen çizelim. Dik açı genellikle ile gösterilir. Lütfen köşenin karşısındaki tarafın aynı harfle, yalnızca küçük olarak gösterildiğini unutmayın. Böylece A açısının karşısındaki taraf gösterilir.

Açı karşılık gelen değerle gösterilir Yunan harfi.

Hipotenüs Bir dik üçgenin dik açının karşısındaki kenardır.

Bacaklar- dar açıların karşısında yer alan kenarlar.

Açının karşısında uzanan bacağa denir zıt(açıya göre). Açının kenarlarından birinde yer alan diğer bacağa denir. bitişik.

Sinüs Bir dik üçgende dar açı, karşı kenarın hipotenüse oranıdır:

Kosinüs Dik üçgende dar açı - bitişik bacağın hipotenüse oranı:

Teğet dik üçgende dar açı - karşı tarafın bitişik tarafa oranı:

Başka bir (eşdeğer) tanım: bir dar açının tanjantı, açının sinüsünün kosinüsüne oranıdır:

Kotanjant dik üçgende dar açı - bitişik tarafın karşı tarafa oranı (veya aynı şekilde kosinüsün sinüse oranı):

Aşağıdaki sinüs, kosinüs, teğet ve kotanjant için temel ilişkilere dikkat edin. Sorunları çözerken bize faydalı olacaklar.

Bunlardan bazılarını kanıtlayalım.

Tamam, tanımları verdik ve formülleri yazdık. Peki neden hala sinüs, kosinüs, teğet ve kotanjanta ihtiyacımız var?

Biz biliyoruz ki herhangi bir üçgenin açılarının toplamı eşittir.

arasındaki ilişkiyi biliyoruz. partiler sağ üçgen. Bu Pisagor teoremidir: .

Bir üçgendeki iki açıyı bilerek üçüncüyü bulabileceğiniz ortaya çıktı. Dik üçgenin iki kenarını bilerek üçüncüsünü bulabilirsiniz. Bu, açıların kendi oranlarına ve kenarların kendilerine ait olduğu anlamına gelir. Peki, bir dik üçgende bir açıyı (dik açı hariç) ve bir kenarı biliyorsanız ancak diğer kenarları bulmanız gerekiyorsa ne yapmalısınız?

Geçmişte insanların bölgenin ve yıldızlı gökyüzünün haritasını çıkarırken karşılaştığı şey buydu. Sonuçta bir üçgenin tüm kenarlarını doğrudan ölçmek her zaman mümkün değildir.

Sinüs, kosinüs ve teğet - bunlara aynı zamanda denir trigonometrik açı fonksiyonları-arasındaki ilişkileri vermek partiler Ve köşelerüçgen. Açıyı bilerek, tüm trigonometrik fonksiyonlarını özel tablolar kullanarak bulabilirsiniz. Ve bir üçgenin açılarının ve kenarlarından birinin sinüslerini, kosinüslerini ve teğetlerini bilerek gerisini bulabilirsiniz.

Ayrıca 'iyi' açılar için sinüs, kosinüs, tanjant ve kotanjant değerlerinin bir tablosunu da çizeceğiz.

Lütfen tablodaki iki kırmızı çizgiye dikkat edin. Uygun açı değerlerinde teğet ve kotanjant mevcut değildir.

FIPI Görev Bankasındaki çeşitli trigonometri problemlerine bakalım.

1. Bir üçgende açı , dir. Bulmak .

Sorun dört saniyede çözüldü.

Çünkü , .

2. Bir üçgende açı , , dir. Bulmak .

Bunu Pisagor teoremini kullanarak bulalım.

Problem çözüldü.

Genellikle problemlerde açılı ve veya açılı üçgenler vardır. Onlar için temel oranları ezbere hatırlayın!

Açıları olan bir üçgen için ve açının karşısındaki bacak eşittir hipotenüsün yarısı.

Açıları olan ve ikizkenar olan bir üçgen. İçinde hipotenüs bacaktan kat kat daha büyüktür.

Dik üçgenleri çözme, yani bilinmeyen kenarları veya açıları bulma problemlerine baktık. Ama hepsi bu değil! İÇİNDE Birleşik Devlet Sınavı seçenekleri matematikte bir üçgenin dış açısının sinüs, kosinüs, tanjant veya kotanjantının ortaya çıktığı birçok problem vardır. Bir sonraki makalede bu konuda daha fazla bilgi vereceğiz.

Öğrencilerin en çok uğraştığı matematik alanlarından biri trigonometridir. Şaşırtıcı değil: Bu bilgi alanında özgürce ustalaşmak için, mekansal düşünmeye, sinüsleri, kosinüsleri, teğetleri, formülleri kullanarak kotanjantları bulma yeteneğine, ifadeleri basitleştirmeye ve pi sayısını kullanabilmeniz gerekir. hesaplamalar. Ayrıca teoremleri ispatlarken trigonometriyi kullanabilmeniz gerekir ve bu da ya gelişmiş bir matematik hafızası ya da karmaşık mantıksal zincirler türetme yeteneği gerektirir.

Trigonometrinin kökenleri

Bu bilimle tanışmak bir açının sinüs, kosinüs ve tanjantının tanımıyla başlamalıdır, ancak önce genel olarak trigonometrinin ne yaptığını anlamanız gerekir.

Tarihsel olarak, matematik biliminin bu dalındaki çalışmanın ana amacı dik üçgenlerdi. 90 derecelik bir açının varlığı, söz konusu şeklin tüm parametrelerinin değerlerinin iki kenar ve bir açı veya iki açı ve bir kenar kullanılarak belirlenmesine olanak tanıyan çeşitli işlemlerin gerçekleştirilmesini mümkün kılar. Geçmişte insanlar bu modeli fark etmiş ve bina yapımında, navigasyonda, astronomide ve hatta sanatta aktif olarak kullanmaya başlamışlardır.

İlk aşama

Başlangıçta insanlar açılar ve kenarlar arasındaki ilişkiden yalnızca dik üçgen örneğini kullanarak bahsettiler. Sonra açtılar özel formüller kullanım sınırlarını genişletmeyi mümkün kıldı. Gündelik Yaşam matematiğin bu dalı.

Bugün okulda trigonometri çalışması dik üçgenlerle başlıyor, ardından öğrenciler edinilen bilgiyi fizikte kullanıyor ve soyut problemleri çözüyor. trigonometrik denklemler, lisede başlayan çalışma.

Küresel trigonometri

Daha sonra bilim bir sonraki gelişme düzeyine ulaştığında, farklı kuralların geçerli olduğu ve bir üçgendeki açıların toplamının her zaman 180 dereceden fazla olduğu küresel geometride sinüs, kosinüs, teğet ve kotanjantlı formüller kullanılmaya başlandı. Bu bölüm okulda incelenmiyor, ancak en azından dünyanın yüzeyi ve başka herhangi bir gezegenin yüzeyi dışbükey olduğu için varlığını bilmek gerekiyor, bu da herhangi bir yüzey işaretinin "yay şeklinde" olacağı anlamına geliyor. üç boyutlu uzay.

Küreyi ve ipliği alın. İpliği küre üzerindeki herhangi iki noktaya gergin olacak şekilde takın. Lütfen dikkat - bir yay şeklini almıştır. Küresel geometri, jeodezi, astronomi ve diğer teorik ve uygulamalı alanlarda kullanılan bu tür formlarla ilgilenir.

Sağ üçgen

Trigonometri kullanma yolları hakkında biraz bilgi sahibi olduktan sonra sinüs, kosinüs, tanjantın ne olduğunu, bunların yardımıyla hangi hesaplamaların yapılabileceğini ve hangi formüllerin kullanılacağını daha iyi anlamak için temel trigonometriye dönelim.

İlk adım dik üçgenle ilgili kavramları anlamaktır. Öncelikle hipotenüs 90 derecelik açının karşısındaki kenardır. Bu en uzun olanıdır. Pisagor teoremine göre sayısal değerinin diğer iki tarafın kareleri toplamının köküne eşit olduğunu hatırlıyoruz.

Örneğin iki kenar sırasıyla 3 ve 4 santimetre ise hipotenüsün uzunluğu 5 santimetre olacaktır. Bu arada, eski Mısırlılar bunu yaklaşık dört buçuk bin yıl önce biliyorlardı.

Dik açı oluşturan kalan iki tarafa bacak denir. Ayrıca dikdörtgen koordinat sistemindeki üçgenin açılarının toplamının 180 dereceye eşit olduğunu unutmamalıyız.

Tanım

Son olarak, geometrik temelin sağlam bir şekilde anlaşılmasıyla, sinüs, kosinüs ve bir açının tanjantının tanımına dönülebilir.

Bir açının sinüsü, karşı tarafın (yani karşı tarafta bulunan tarafın) oranıdır. istenilen açı) hipotenüse. Bir açının kosinüsü, komşu kenarın hipotenüse oranıdır.

Ne sinüs ne de kosinüsün birden büyük olamayacağını unutmayın! Neden? Çünkü hipotenüs varsayılan olarak en uzun olanıdır, kenar ne kadar uzun olursa olsun hipotenüsten daha kısa olacaktır, yani oranları her zaman birden küçük olacaktır. Bu nedenle, bir soruna verdiğiniz yanıtta 1'den büyük bir sinüs veya kosinüs değeri alırsanız, hesaplamalarda veya akıl yürütmede bir hata olup olmadığına bakın. Bu cevap açıkça yanlıştır.

Son olarak bir açının tanjantı, karşı kenarın komşu kenara oranıdır. Sinüsün kosinüse bölünmesi aynı sonucu verecektir. Bakın: formüle göre, kenarın uzunluğunu hipotenüse bölüyoruz, sonra ikinci kenarın uzunluğuna bölüyoruz ve hipotenüsle çarpıyoruz. Böylece teğetin tanımındaki ilişkinin aynısını elde ederiz.

Buna göre kotanjant, köşeye bitişik tarafın karşı tarafa oranıdır. Birini teğete bölerek de aynı sonucu elde ederiz.

Böylece sinüs, kosinüs, tanjant ve kotanjantın ne olduğuna dair tanımlara baktık ve formüllere geçebiliriz.

En basit formüller

Trigonometride formüller olmadan yapamazsınız - onlar olmadan sinüs, kosinüs, teğet, kotanjant nasıl bulunur? Ancak sorunları çözerken tam olarak gerekli olan şey budur.

Trigonometriyi incelemeye başladığınızda bilmeniz gereken ilk formül, bir açının sinüs ve kosinüsünün karelerinin toplamının bire eşit olduğunu söylüyor. Bu formül Pisagor teoreminin doğrudan bir sonucudur, ancak kenar yerine açının boyutunu bilmeniz gerekiyorsa zaman kazandırır.

Pek çok öğrenci, okul problemlerini çözerken de çok popüler olan ikinci formülü hatırlayamıyor: Bir ile bir açının tanjantının karesinin toplamı, birin açının kosinüsünün karesine bölünmesine eşittir. Daha yakından bakın: Bu, ilk formüldeki ifadenin aynısıdır; yalnızca kimliğin her iki tarafı da kosinüsün karesine bölünmüştür. Basit bir matematiksel işlemin trigonometrik formülü tamamen tanınmaz hale getirdiği ortaya çıktı. Unutmayın: Sinüs, kosinüs, tanjant ve kotanjantın ne olduğunu, dönüşüm kurallarını ve birkaç temel formülü bilerek, istediğiniz zaman bağımsız olarak gerekli olandan fazlasını elde edebilirsiniz. karmaşık formüller bir parça kağıt üzerinde.

Çift açı formülleri ve bağımsız değişkenlerin eklenmesi

Öğrenmeniz gereken iki formül daha, açıların toplamı ve farkı için sinüs ve kosinüs değerleriyle ilgilidir. Aşağıdaki şekilde sunulmuştur. Lütfen ilk durumda sinüs ve kosinüsün her iki kez çarpıldığını ve ikincisinde sinüs ve kosinüsün ikili çarpımının toplandığını unutmayın.

Çift açılı argümanlarla ilişkili formüller de vardır. Tamamen öncekilerden türetilmiştir - pratik olarak, alfa açısını beta açısına eşit alarak bunları kendiniz elde etmeye çalışın.

Son olarak çift açı formüllerinin sinüs, kosinüs, tanjant alfanın gücünü azaltacak şekilde yeniden düzenlenebileceğini unutmayın.

Teoremler

Temel trigonometrideki iki ana teorem sinüs teoremi ve kosinüs teoremidir. Bu teoremlerin yardımıyla sinüs, kosinüs ve tanjantı, dolayısıyla şeklin alanını ve her bir tarafın boyutunu vb. nasıl bulacağınızı kolayca anlayabilirsiniz.

Sinüs teoremi, bir üçgenin her bir kenarının uzunluğunu karşıt açıya bölerek şunu elde ettiğimizi belirtir: aynı numara. Üstelik bu sayı, çevrelenen dairenin, yani belirli bir üçgenin tüm noktalarını içeren dairenin iki yarıçapına eşit olacaktır.

Kosinüs teoremi, Pisagor teoremini herhangi bir üçgene yansıtarak genelleştirir. İki tarafın karelerinin toplamından, çarpımlarının bitişik açının çift kosinüsüyle çarpılmasıyla elde edilen değerin üçüncü tarafın karesine eşit olacağı ortaya çıktı. Böylece Pisagor teoreminin kosinüs teoreminin özel bir durumu olduğu ortaya çıkıyor.

Dikkatsiz hatalar

Sinüs, kosinüs ve tanjantın ne olduğunu bilseniz bile, dalgınlıktan veya en basit hesaplamalardaki hatalardan dolayı hata yapmak kolaydır. Bu tür hatalardan kaçınmak için en popüler olanlara bir göz atalım.

Öncelikle, nihai sonucu elde edene kadar kesirleri ondalık sayılara dönüştürmemelisiniz - cevabı şu şekilde bırakabilirsiniz: ortak kesir Koşullarda aksi belirtilmediği sürece. Böyle bir dönüşüme hata denemez, ancak sorunun her aşamasında yazarın fikrine göre azaltılması gereken yeni köklerin ortaya çıkabileceği unutulmamalıdır. Bu durumda gereksiz matematiksel işlemlerle zamanınızı boşa harcamış olursunuz. Bu özellikle üçün kökü veya ikinin kökü gibi değerler için geçerlidir çünkü bunlar her adımda problemlerle karşılaşır. Aynı şey “çirkin” sayıların yuvarlanması için de geçerli.

Ayrıca, kosinüs teoreminin herhangi bir üçgen için geçerli olduğunu ancak Pisagor teoreminin geçerli olmadığını unutmayın! Yanlışlıkla kenarların çarpımının iki katını aralarındaki açının kosinüsüyle çarpmayı unutursanız, yalnızca tamamen yanlış bir sonuç elde etmekle kalmayacak, aynı zamanda konuyu tam olarak anlamadığınızı da göstereceksiniz. Bu, dikkatsiz bir hatadan daha kötüdür.

Üçüncüsü, sinüsler, kosinüsler, teğetler, kotanjantlar için 30 ve 60 derecelik açıların değerlerini karıştırmayın. Bu değerleri unutmayın, çünkü 30 derecenin sinüsü 60'ın kosinüsüne eşittir ve bunun tersi de geçerlidir. Onları karıştırmak kolaydır, bunun sonucunda kaçınılmaz olarak hatalı bir sonuç elde edersiniz.

Başvuru

Pek çok öğrenci trigonometri çalışmaya başlamak için acele etmiyor çünkü pratik anlamını anlamıyorlar. Bir mühendis veya gökbilimci için sinüs, kosinüs, tanjant nedir? Bunlar, uzaktaki yıldızlara olan mesafeyi hesaplayabileceğiniz, bir göktaşının düşüşünü tahmin edebileceğiniz veya başka bir gezegene araştırma sondası gönderebileceğiniz kavramlardır. Onlar olmadan bir bina inşa etmek, bir araba tasarlamak, bir yüzeydeki yükü veya bir nesnenin yörüngesini hesaplamak imkansızdır. Ve bunlar sadece en bariz örnekler! Sonuçta trigonometri şu ya da bu şekilde müzikten tıbba kadar her yerde kullanılıyor.

Nihayet

Yani sinüs, kosinüs ve tanjantsınız. Bunları hesaplamalarda kullanabilir ve okul problemlerini başarıyla çözebilirsiniz.

Trigonometrinin asıl amacı, bir üçgenin bilinen parametrelerini kullanarak bilinmeyenleri hesaplamanız gerektiği gerçeğine dayanır. Toplamda altı parametre vardır: üç kenarın uzunluğu ve üç açının boyutu. Görevlerdeki tek fark, farklı girdi verilerinin verilmiş olmasıdır.

Artık bacakların bilinen uzunluklarına veya hipotenüse göre sinüs, kosinüs ve teğetleri nasıl bulacağınızı biliyorsunuz. Bu terimler bir orandan başka bir şey ifade etmediğinden ve oran bir kesir olduğundan, trigonometri probleminin asıl amacı sıradan bir denklemin veya denklem sisteminin köklerini bulmaktır. Ve burada normal okul matematiği size yardımcı olacaktır.

– Kesinlikle trigonometri ile ilgili görevler olacak. Trigonometri, sinüsler, kosinüsler, teğetler ve kotanjantlarla dolu çok sayıda zor formülü doldurma ihtiyacı nedeniyle çoğu zaman sevilmez. Site zaten bir zamanlar Euler ve Peel formülleri örneğini kullanarak unutulmuş bir formülün nasıl hatırlanacağı konusunda tavsiyeler vermişti.

Ve bu yazıda sadece en basit beş tanesini kesin olarak bilmenin yeterli olduğunu göstermeye çalışacağız. trigonometrik formüller ve geri kalanı hakkında Genel fikir ve giderken onları dışarı çıkar. Tıpkı DNA'da olduğu gibi: Molekül, tamamlanmış bir canlı varlığın tüm planlarını saklamaz. Aksine, mevcut amino asitlerden bir araya getirilmesi için talimatlar içerir. Yani trigonometride biraz bilgi sahibi olmak Genel İlkeler, akılda tutulması gereken küçük bir grup formülden gerekli tüm formülleri alacağız.

Aşağıdaki formüllere güveneceğiz:

Sinüs ve kosinüs toplamları formüllerinden, kosinüs fonksiyonunun paritesini ve sinüs fonksiyonunun tuhaflığını bilerek, b yerine -b'yi koyarak, farklar için formüller elde ederiz:

  1. Farkın sinüsü: günah(a-b) = günahAçünkü(-B)+çünküAgünah(-B) = günahAçünküB-çünküAgünahB
  2. Farkın kosinüsü: çünkü(a-b) = çünküAçünkü(-B)-günahAgünah(-B) = çünküAçünküB+günahAgünahB

a = b'yi aynı formüllere yerleştirerek çift açıların sinüs ve kosinüs formüllerini elde ederiz:

  1. Çift açının sinüsü: günah2a = günah(a+a) = günahAçünküA+çünküAgünahA = 2günahAçünküA
  2. Çift açının kosinüsü: çünkü2a = çünkü(a+a) = çünküAçünküA-günahAgünahA = çünkü2 bir-günah2 bir

Diğer çoklu açıların formülleri de benzer şekilde elde edilir:

  1. Üçlü açının sinüsü: günah3 A = günah(2a+a) = günah2açünküA+çünkü2agünahA = (2günahAçünküA)çünküA+(çünkü2 bir-günah2 bir)günahA = 2günahAçünkü2 bir+günahAçünkü2 bir-günah 3 bir = 3 günahAçünkü2 bir-günah 3 bir = 3 günahA(1-günah2 bir)-günah 3 bir = 3 günahA-4günah 3 A
  2. Üçlü açının kosinüsü: çünkü3 A = çünkü(2a+a) = çünkü2açünküA-günah2agünahA = (çünkü2 bir-günah2 bir)çünküA-(2günahAçünküA)günahA = çünkü 3 A- günah2 birçünküA-2günah2 birçünküA = çünkü 3 a-3 günah2 birçünküA = çünkü 3 a-3(1- çünkü2 bir)çünküA = 4çünkü 3 a-3 çünküA

Devam etmeden önce bir soruna bakalım.
Verilen: açı dardır.
Eğer kosinüsünü bulun
Bir öğrencinin verdiği çözüm:
Çünkü , O günahA= 3,a çünküA = 4.
(Matematik mizahından)

Dolayısıyla tanjantın tanımı bu fonksiyonu hem sinüs hem de kosinüs ile ilişkilendirir. Ancak teğeti yalnızca kosinüsle ilişkilendiren bir formül elde edebilirsiniz. Bunu türetmek için ana trigonometrik özdeşliği alıyoruz: günah 2 A+çünkü 2 A= 1 ve bunu böl çünkü 2 A. Şunu elde ederiz:

Yani bu sorunun çözümü şöyle olacaktır:

(Açı dar olduğundan kök çıkartılırken + işareti alınır)

Bir toplamın tanjant formülü hatırlanması zor olan başka bir formüldür. Şu şekilde çıktısını alalım:

Hemen görüntülenir ve

Çift açı için kosinüs formülünden yarım açılar için sinüs ve kosinüs formüllerini elde edebilirsiniz. Bunu yapmak için çift açılı kosinüs formülünün sol tarafına:
çünkü2 A = çünkü 2 A-günah 2 A
bir tane ekliyoruz ve sağa - bir trigonometrik birim, yani. sinüs ve kosinüs karelerinin toplamı.
çünkü2a+1 = çünkü2 bir-günah2 bir+çünkü2 bir+günah2 bir
2çünkü 2 A = çünkü2 A+1
İfade etme çünküA başından sonuna kadar çünkü2 A ve değişkenleri değiştirerek şunu elde ederiz:

İşaret çeyreğe bağlı olarak alınır.

Benzer şekilde eşitliğin sol tarafından bir ve sağdan sinüs ve kosinüs karelerinin toplamından bir çıkardığımızda şunu elde ederiz:
çünkü2a-1 = çünkü2 bir-günah2 bir-çünkü2 bir-günah2 bir
2günah 2 A = 1-çünkü2 A

Son olarak trigonometrik fonksiyonların toplamını çarpıma dönüştürmek için aşağıdaki tekniği kullanıyoruz. Diyelim ki sinüslerin toplamını bir çarpım olarak temsil etmemiz gerekiyor günahA+günahB. a = x+y, b+x-y olacak şekilde x ve y değişkenlerini tanıtalım. Daha sonra
günahA+günahB = günah(x+y)+ günah(x-y) = günah X çünkü y+ çünkü X günah y+ günah X çünkü y- çünkü X günah y=2 günah X çünkü y. Şimdi x ve y'yi a ve b cinsinden ifade edelim.

a = x+y, b = x-y olduğundan, o zaman . Bu yüzden

Hemen geri çekilebilirsiniz

  1. Bölümlendirme formülü sinüs ve kosinüs çarpımları V miktar: günahAçünküB = 0.5(günah(a+b)+günah(a-b))

Sinüslerin farkını ve kosinüslerin toplamını ve farkını çarpıma dönüştürmek, sinüs ve kosinüslerin çarpımlarını toplama bölmek için kendi başınıza pratik yapmanızı ve formüller türetmenizi öneririz. Bu alıştırmaları tamamladıktan sonra, trigonometrik formülleri türetme becerisinde iyice ustalaşacak ve en zor testlerde, olimpiyatlarda veya testlerde bile kaybolmayacaksınız.

Trigonometri, trigonometrik fonksiyonları ve bunların geometride kullanımını inceleyen bir matematik bilimi dalıdır. Trigonometrinin gelişimi antik Yunan'da başladı. Orta Çağ boyunca Orta Doğu ve Hindistan'dan bilim adamlarının bu bilimin gelişmesine önemli katkıları olmuştur.

Bu makale şuna adanmıştır: temel konseptler ve trigonometrinin tanımları. Temel trigonometrik fonksiyonların tanımlarını tartışır: sinüs, kosinüs, tanjant ve kotanjant. Anlamları geometri bağlamında açıklanmış ve gösterilmiştir.

Yandex.RTB R-A-339285-1

Başlangıçta argümanı açı olan trigonometrik fonksiyonların tanımları bir dik üçgenin kenarlarının oranı cinsinden ifade ediliyordu.

Trigonometrik fonksiyonların tanımları

Bir açının sinüsü (sin α), bu açının karşısındaki kenarın hipotenüse oranıdır.

Açının kosinüsü (cos α) - bitişik bacağın hipotenüse oranı.

Açı teğeti (t g α) - karşı tarafın bitişik tarafa oranı.

Açı kotanjantı (c t g α) - bitişik tarafın karşı tarafa oranı.

Bu tanımlar bir dik üçgenin dar açısı için verilmiştir!

Bir örnek verelim.

İÇİNDE ABC üçgeni C dik açısında A açısının sinüsü, BC kenarının AB hipotenüsüne oranına eşittir.

Sinüs, kosinüs, teğet ve kotanjant tanımları, bu fonksiyonların değerlerini üçgenin kenarlarının bilinen uzunluklarından hesaplamanıza olanak tanır.

Hatırlanması önemli!

Sinüs ve kosinüs değerlerinin aralığı -1'den 1'e kadardır. Yani sinüs ve kosinüs -1'den 1'e kadar değerler alır. Teğet ve kotanjantın değer aralığı sayı doğrusunun tamamıdır, yani bu işlevler herhangi bir değeri alabilir.

Yukarıda verilen tanımlar dar açılar için geçerlidir. Trigonometride, değeri dar açıdan farklı olarak 0 ila 90 derece ile sınırlı olmayan bir dönme açısı kavramı tanıtıldı.Derece veya radyan cinsinden dönme açısı - ∞ ila + ∞ arasında herhangi bir gerçek sayı ile ifade edilir. .

Bu bağlamda keyfi büyüklükte bir açının sinüs, kosinüs, tanjant ve kotanjantını tanımlayabiliriz. Merkezi Kartezyen koordinat sisteminin başlangıç ​​noktasında olan bir birim çember düşünelim.

Koordinatları (1, 0) olan başlangıç ​​noktası A, birim çemberin merkezi etrafında belirli bir α açısı boyunca döner ve A 1 noktasına gider. Tanım A 1 (x, y) noktasının koordinatları cinsinden verilmiştir.

Dönme açısının sinüsü (sinüsü)

Dönme açısı α'nın sinüsü, A1 (x, y) noktasının ordinatıdır. günah α = y

Dönme açısının kosinüsü (cos)

Dönme açısı α'nın kosinüsü, A1 (x, y) noktasının apsisidir. çünkü α = x

Dönme açısının tanjantı (tg)

Dönme açısı α'nın tanjantı, A1 noktasının (x, y) ordinatının apsisine oranıdır. t g α = y x

Dönme açısının kotanjantı (ctg)

Dönme açısı α'nın kotanjantı, A1 noktasının (x, y) apsisinin ordinatına oranıdır. c t g α = x y

Sinüs ve kosinüs herhangi bir dönüş açısı için tanımlanır. Bu mantıklıdır çünkü bir noktanın dönme sonrasında apsisi ve ordinatı herhangi bir açıda belirlenebilir. Teğet ve kotanjant için durum farklıdır. Döndürme sonrasında bir nokta sıfır apsisli (0, 1) ve (0, - 1) bir noktaya gittiğinde teğet tanımsızdır. Bu gibi durumlarda, t g α = y x teğet ifadesi, sıfıra bölünmeyi içerdiği için anlamsızdır. Durum kotanjant için de benzerdir. Aradaki fark, bir noktanın ordinatının sıfıra gittiği durumlarda kotanjantın tanımlı olmamasıdır.

Hatırlanması önemli!

Sinüs ve kosinüs herhangi bir α açısı için tanımlanır.

Teğet, α = 90° + 180° k, k ∈ Z (α = π 2 + π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Kotanjant, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Karar verirken pratik örnekler"α dönme açısının sinüsü" demeyin. "Dönme açısı" kelimeleri basitçe atlanmıştır, bu da neyin tartışıldığının bağlamdan zaten açıkça anlaşıldığını ima etmektedir.

Sayılar

Bir sayının dönme açısı değil de sinüs, kosinüs, tanjant ve kotanjantının tanımına ne dersiniz?

Bir sayının sinüs, kosinüs, tanjant, kotanjantı

Bir sayının sinüs, kosinüs, tanjant ve kotanjantı T sırasıyla sinüs, kosinüs, teğet ve kotanjanta eşit olan bir sayıdır. T radyan.

Örneğin 10 π sayısının sinüsü sinüse eşit 10 π rad dönüş açısı.

Bir sayının sinüsünü, kosinüsünü, tanjantını ve kotanjantını belirlemeye yönelik başka bir yaklaşım daha vardır. Şimdi ona daha yakından bakalım.

Herhangi biri gerçek Numara T Birim çember üzerindeki bir nokta, dikdörtgen Kartezyen koordinat sisteminin başlangıç ​​noktasındaki merkezle ilişkilidir. Sinüs, kosinüs, tanjant ve kotanjant bu noktanın koordinatları üzerinden belirlenir.

Çemberin başlangıç ​​noktası koordinatları (1, 0) olan A noktasıdır.

Pozitif sayı T

Negatif sayı T başlangıç ​​noktasının daire etrafında saat yönünün tersine hareket etmesi ve t yolunu geçmesi durumunda gideceği noktaya karşılık gelir.

Artık bir sayı ile bir daire üzerindeki bir nokta arasındaki bağlantı kurulduğuna göre sinüs, kosinüs, teğet ve kotanjantın tanımına geçiyoruz.

T'nin sinüsü (günahı)

Bir sayının sinüsü T- birim çember üzerindeki sayıya karşılık gelen bir noktanın koordinatı T. günah t = y

Kosinüs (cos) t

Bir sayının kosinüsü T- birim çemberin sayıya karşılık gelen noktasının apsisi T. çünkü t = x

T'nin tanjantı (tg)

Bir sayının tanjantı T- birim çember üzerindeki sayıya karşılık gelen bir noktanın ordinatının apsisine oranı T. t g t = y x = sin t çünkü t

En son tanımlar bu paragrafın başında verilen tanıma uygundur ve çelişmez. Sayıya karşılık gelen dairenin üzerine gelin T, bir açıyla döndükten sonra başlangıç ​​noktasının gittiği noktaya denk gelir T radyan.

Açısal ve sayısal argümanın trigonometrik fonksiyonları

α açısının her değeri, bu açının sinüs ve kosinüsünün belirli bir değerine karşılık gelir. α = 90° + 180°k dışındaki tüm α açıları gibi, k ∈ Z (α = π 2 + π k, k ∈ Z) belirli bir teğet değerine karşılık gelir. Kotanjant, yukarıda belirtildiği gibi, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm α'lar için tanımlanır.

sin α, cos α, t g α, c t g α'nın alfa açısının fonksiyonları veya açısal argümanın fonksiyonları olduğunu söyleyebiliriz.

Benzer şekilde, sayısal bir argümanın fonksiyonları olarak sinüs, kosinüs, tanjant ve kotanjanttan bahsedebiliriz. Her gerçek sayı T bir sayının sinüs veya kosinüsünün belirli bir değerine karşılık gelir T. π 2 + π · k, k ∈ Z dışındaki tüm sayılar bir teğet değere karşılık gelir. Benzer şekilde kotanjant, π · k, k ∈ Z dışındaki tüm sayılar için tanımlanır.

Trigonometrinin temel fonksiyonları

Sinüs, kosinüs, tanjant ve kotanjant temel trigonometrik fonksiyonlardır.

Hangi argümanın kullanıldığı bağlamdan genellikle açıkça anlaşılır. trigonometrik fonksiyon(açısal argüman veya sayısal argüman) ile uğraşıyoruz.

En başta verilen tanımlara ve 0 ila 90 derece aralığında yer alan alfa açısına dönelim. Sinüs, kosinüs, tanjant ve kotanjantın trigonometrik tanımları, bir dik üçgenin en boy oranlarının verdiği geometrik tanımlarla tamamen tutarlıdır. Hadi gösterelim.

Dikdörtgen Kartezyen koordinat sisteminde merkezi olan bir birim çemberi ele alalım. A (1, 0) başlangıç ​​noktasını 90 dereceye kadar bir açıyla döndürelim ve ortaya çıkan A 1 (x, y) noktasından apsis eksenine dik bir çizelim. Ortaya çıkan dik üçgende A 1 O H açısı açıya eşitα'yı döndürdüğünüzde, O H ayağının uzunluğu A 1 (x, y) noktasının apsisine eşittir. Açının karşısındaki bacağın uzunluğu A 1 (x, y) noktasının ordinatına eşittir ve birim dairenin yarıçapı olduğu için hipotenüsün uzunluğu bire eşittir.

Geometrideki tanıma uygun olarak, α açısının sinüsü karşı tarafın hipotenüse oranına eşittir.

sin α = A 1 H O A 1 = y 1 = y

Bu, bir dik üçgende bir dar açının sinüsünü en boy oranı aracılığıyla belirlemenin, alfa 0 ila 90 derece aralığında yer alacak şekilde dönme açısı a'nın sinüsünü belirlemeye eşdeğer olduğu anlamına gelir.

Benzer şekilde kosinüs, tanjant ve kotanjant için tanımların uygunluğu gösterilebilir.

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.