Bagaimana untuk menyelesaikan perkembangan. Janjang aritmetik. Teori terperinci dengan contoh (2019)

fasad

Sebagai contoh, urutan \(2\); \(5\); \(8\); \(11\); \(14\)... ialah janjang aritmetik kerana setiap satu elemen seterusnya berbeza daripada yang sebelumnya dengan tiga (boleh diperoleh daripada yang sebelumnya dengan menambah tiga):

Dalam janjang ini, perbezaan \(d\) adalah positif (sama dengan \(3\)), dan oleh itu setiap sebutan seterusnya adalah lebih besar daripada yang sebelumnya. Perkembangan sedemikian dipanggil semakin meningkat.

Walau bagaimanapun, \(d\) juga boleh nombor negatif. Contohnya, dalam janjang aritmetik \(16\); \(10\); \(4\); \(-2\); \(-8\)... perbezaan janjang \(d\) adalah sama dengan tolak enam.

Dan dalam kes ini, setiap elemen seterusnya akan menjadi lebih kecil daripada yang sebelumnya. Perkembangan ini dipanggil semakin berkurangan.

tatatanda janjang aritmetik

Kemajuan ditunjukkan oleh huruf Latin kecil.

Nombor yang membentuk janjang dipanggil ahli(atau unsur-unsur).

Mereka dilambangkan dengan huruf yang sama dengan janjang aritmetik, tetapi dengan indeks berangka yang sama dengan bilangan elemen dalam susunan.

Sebagai contoh, janjang aritmetik \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) terdiri daripada unsur \(a_1=2\); \(a_2=5\); \(a_3=8\) dan seterusnya.

Dalam erti kata lain, untuk janjang \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Menyelesaikan masalah janjang aritmetik

Pada dasarnya, maklumat yang dibentangkan di atas sudah cukup untuk menyelesaikan hampir semua masalah janjang aritmetik (termasuk yang ditawarkan di OGE).

Contoh (OGE). Janjang aritmetik diberikan oleh syarat \(b_1=7; d=4\). Cari \(b_5\).
Penyelesaian:

Jawapan: \(b_5=23\)

Contoh (OGE). Tiga sebutan pertama suatu janjang aritmetik diberikan: \(62; 49; 36…\) Cari nilai sebutan negatif pertama janjang ini..
Penyelesaian:

Kami diberi elemen pertama jujukan dan mengetahui bahawa ia adalah janjang aritmetik. Iaitu, setiap elemen berbeza daripada jirannya dengan nombor yang sama. Mari kita ketahui yang mana satu dengan menolak yang sebelumnya daripada elemen seterusnya: \(d=49-62=-13\).

Sekarang kita boleh memulihkan perkembangan kita kepada elemen (negatif pertama) yang kita perlukan.

sedia. Anda boleh menulis jawapan.

Jawapan: \(-3\)

Contoh (OGE). Diberi beberapa unsur berturutan bagi janjang aritmetik: \(…5; x; 10; 12.5...\) Cari nilai unsur yang ditetapkan oleh huruf \(x\).
Penyelesaian:


Untuk mencari \(x\), kita perlu tahu berapa banyak unsur seterusnya berbeza daripada yang sebelumnya, dengan kata lain, perbezaan janjang. Mari cari daripada dua unsur jiran yang diketahui: \(d=12.5-10=2.5\).

Dan kini kita boleh mencari dengan mudah apa yang kita cari: \(x=5+2.5=7.5\).


sedia. Anda boleh menulis jawapan.

Jawapan: \(7,5\).

Contoh (OGE). Janjang aritmetik ditakrifkan oleh keadaan berikut: \(a_1=-11\); \(a_(n+1)=a_n+5\) Cari hasil tambah enam sebutan pertama janjang ini.
Penyelesaian:

Kita perlu mencari jumlah enam sebutan pertama janjang itu. Tetapi kita tidak tahu maknanya; kita hanya diberikan unsur pertama. Oleh itu, kita mula-mula mengira nilai satu demi satu, menggunakan apa yang diberikan kepada kita:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Dan setelah mengira enam elemen yang kita perlukan, kita dapati jumlahnya.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Jumlah yang diperlukan telah ditemui.

Jawapan: \(S_6=9\).

Contoh (OGE). Dalam janjang aritmetik \(a_(12)=23\); \(a_(16)=51\). Cari perbezaan janjang ini.
Penyelesaian:

Jawapan: \(d=7\).

Formula penting untuk janjang aritmetik

Seperti yang anda lihat, banyak masalah mengenai janjang aritmetik boleh diselesaikan hanya dengan memahami perkara utama - bahawa janjang aritmetik ialah rantai nombor, dan setiap elemen berikutnya dalam rantai ini diperoleh dengan menambah nombor yang sama kepada yang sebelumnya ( perbezaan perkembangan).

Walau bagaimanapun, kadangkala terdapat situasi apabila membuat keputusan "head-on" adalah sangat menyusahkan. Sebagai contoh, bayangkan bahawa dalam contoh pertama kita perlu mencari bukan elemen kelima \(b_5\), tetapi tiga ratus lapan puluh enam \(b_(386)\). Patutkah kita menambah empat \(385\) kali? Atau bayangkan bahawa dalam contoh terakhir anda perlu mencari jumlah tujuh puluh tiga elemen pertama. Anda akan penat mengira...

Oleh itu, dalam kes sebegini mereka tidak menyelesaikan perkara secara "head-on", tetapi menggunakan formula khas yang diperoleh untuk janjang aritmetik. Dan yang utama ialah formula untuk sebutan ke-n bagi janjang dan formula untuk jumlah \(n\) sebutan pertama.

Formula bagi \(n\) sebutan ke: \(a_n=a_1+(n-1)d\), dengan \(a_1\) ialah sebutan pertama janjang;
\(n\) – nombor elemen yang diperlukan;
\(a_n\) – sebutan janjang dengan nombor \(n\).


Formula ini membolehkan kita mencari dengan cepat walaupun elemen tiga ratus atau sejuta, hanya mengetahui yang pertama dan perbezaan janjang.

Contoh. Janjang aritmetik ditentukan oleh syarat: \(b_1=-159\); \(d=8.2\). Cari \(b_(246)\).
Penyelesaian:

Jawapan: \(b_(246)=1850\).

Formula untuk hasil tambah n sebutan pertama: \(S_n=\frac(a_1+a_n)(2) \cdot n\), di mana



\(a_n\) – sebutan terakhir yang dijumlahkan;


Contoh (OGE). Janjang aritmetik ditentukan oleh keadaan \(a_n=3.4n-0.6\). Cari hasil tambah bagi sebutan \(25\) pertama bagi janjang ini.
Penyelesaian:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Untuk mengira jumlah bagi dua puluh lima sebutan pertama, kita perlu mengetahui nilai sebutan pertama dan dua puluh lima.
Kemajuan kami diberikan oleh formula sebutan ke-n bergantung pada bilangannya (untuk butiran lanjut, lihat). Mari kita hitung elemen pertama dengan menggantikan satu untuk \(n\).

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

Sekarang mari kita cari sebutan kedua puluh lima dengan menggantikan dua puluh lima bukannya \(n\).

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

Nah, sekarang kita boleh mengira jumlah yang diperlukan dengan mudah.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Jawapannya sudah sedia.

Jawapan: \(S_(25)=1090\).

Untuk jumlah \(n\) sebutan pertama, anda boleh mendapatkan formula lain: anda hanya perlu \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) bukannya \(a_n\) gantikan formula untuknya \(a_n=a_1+(n-1)d\). Kami mendapat:

Formula untuk hasil tambah n sebutan pertama: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), di mana

\(S_n\) – jumlah yang diperlukan bagi \(n\) elemen pertama;
\(a_1\) – sebutan penjumlahan pertama;
\(d\) – perbezaan janjang;
\(n\) – bilangan elemen secara keseluruhan.

Contoh. Cari hasil tambah bagi sebutan \(33\)-ex pertama bagi janjang aritmetik: \(17\); \(15.5\); \(14\)…
Penyelesaian:

Jawapan: \(S_(33)=-231\).

Masalah janjang aritmetik yang lebih kompleks

Kini anda mempunyai semua maklumat yang anda perlukan untuk menyelesaikan hampir semua masalah janjang aritmetik. Mari kita selesaikan topik dengan mempertimbangkan masalah di mana anda bukan sahaja perlu menggunakan formula, tetapi juga berfikir sedikit (dalam matematik ini boleh berguna ☺)

Contoh (OGE). Cari hasil tambah semua sebutan negatif janjang itu: \(-19.3\); \(-19\); \(-18.7\)…
Penyelesaian:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Tugas ini sangat serupa dengan yang sebelumnya. Kami mula menyelesaikan perkara yang sama: pertama kami mencari \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Sekarang kami ingin menggantikan \(d\) ke dalam formula untuk jumlah... dan di sini satu nuansa kecil muncul - kami tidak tahu \(n\). Dalam erti kata lain, kita tidak tahu berapa banyak istilah yang perlu ditambah. Bagaimana untuk mengetahui? Mari kita fikirkan. Kami akan berhenti menambah elemen apabila kami mencapai elemen positif pertama. Iaitu, anda perlu mengetahui bilangan elemen ini. Bagaimana? Mari tuliskan formula untuk mengira mana-mana unsur janjang aritmetik: \(a_n=a_1+(n-1)d\) untuk kes kami.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

Kita memerlukan \(a_n\) untuk menjadi lebih besar daripada sifar. Mari kita ketahui apa \(n\) ini akan berlaku.

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

Kami membahagikan kedua-dua belah ketaksamaan dengan \(0.3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Kami memindahkan tolak satu, tidak lupa untuk menukar tanda-tanda

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Jom kira...

\(n>65,333…\)

...dan ternyata unsur positif pertama akan mempunyai nombor \(66\). Oleh itu, yang terakhir negatif mempunyai \(n=65\). Untuk berjaga-jaga, mari kita semak ini.

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

Jadi kita perlu menambah elemen \(65\) pertama.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

Jawapannya sudah sedia.

Jawapan: \(S_(65)=-630.5\).

Contoh (OGE). Janjang aritmetik ditentukan oleh syarat: \(a_1=-33\); \(a_(n+1)=a_n+4\). Cari jumlah dari \(26\)th hingga \(42\) elemen inklusif.
Penyelesaian:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Dalam masalah ini anda juga perlu mencari jumlah elemen, tetapi bukan bermula dari yang pertama, tetapi dari \(26\)th. Untuk kes sedemikian kami tidak mempunyai formula. Bagaimana untuk membuat keputusan?
Mudah sahaja - untuk mendapatkan jumlah dari \(26\)th hingga \(42\)th, anda mesti mencari jumlah dari \(1\)th hingga \(42\)th, dan kemudian tolak daripadanya jumlah dari pertama hingga \(25\)th (lihat gambar).


Untuk perkembangan kami \(a_1=-33\), dan perbezaan \(d=4\) (lagipun, empat yang kami tambahkan pada elemen sebelumnya untuk mencari yang seterusnya). Mengetahui ini, kita dapati jumlah unsur \(42\)-y yang pertama.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Sekarang jumlah unsur \(25\) pertama.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Dan akhirnya, kami mengira jawapannya.

\(S=S_(42)-S_(25)=2058-375=1683\)

Jawapan: \(S=1683\).

Untuk janjang aritmetik, terdapat beberapa lagi formula yang tidak kami pertimbangkan dalam artikel ini kerana kegunaan praktikalnya yang rendah. Walau bagaimanapun, anda boleh mencari mereka dengan mudah.

Apabila belajar algebra dalam sekolah menengah(darjah 9) satu daripada topik penting ialah kajian tentang jujukan nombor, yang merangkumi janjang - geometri dan aritmetik. Dalam artikel ini kita akan melihat janjang aritmetik dan contoh dengan penyelesaian.

Apakah janjang aritmetik?

Untuk memahami perkara ini, adalah perlu untuk menentukan perkembangan yang dimaksudkan, serta menyediakan formula asas yang akan digunakan kemudian dalam menyelesaikan masalah.

Adalah diketahui bahawa dalam beberapa janjang algebra sebutan pertama adalah sama dengan 6, dan sebutan ke-7 adalah sama dengan 18. Ia adalah perlu untuk mencari perbezaan dan memulihkan jujukan ini kepada sebutan ke-7.

Mari kita gunakan formula untuk menentukan istilah yang tidak diketahui: a n = (n - 1) * d + a 1 . Mari kita gantikan data yang diketahui dari keadaan ke dalamnya, iaitu, nombor a 1 dan 7, kita ada: 18 = 6 + 6 * d. Daripada ungkapan ini anda boleh mengira perbezaan dengan mudah: d = (18 - 6) /6 = 2. Oleh itu, kami telah menjawab bahagian pertama masalah.

Untuk memulihkan urutan kepada sebutan ke-7, anda harus menggunakan definisi janjang algebra, iaitu a 2 = a 1 + d, a 3 = a 2 + d dan seterusnya. Akibatnya, kami memulihkan keseluruhan urutan: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Contoh No. 3: membuat janjang

Mari kita rumitkan lagi keadaan yang lebih kuat tugasan. Sekarang kita perlu menjawab persoalan bagaimana untuk mencari janjang aritmetik. Contoh berikut boleh diberikan: dua nombor diberikan, contohnya - 4 dan 5. Ia adalah perlu untuk mencipta janjang algebra supaya tiga lagi sebutan diletakkan di antara ini.

Sebelum anda mula menyelesaikan masalah ini, anda perlu memahami tempat yang akan diduduki oleh nombor yang diberikan dalam perkembangan masa hadapan. Oleh kerana akan ada tiga lagi istilah di antara mereka, maka 1 = -4 dan 5 = 5. Setelah menetapkan ini, kita beralih kepada masalah, yang serupa dengan yang sebelumnya. Sekali lagi, untuk istilah ke-n kita menggunakan formula, kita dapat: a 5 = a 1 + 4 * d. Daripada: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2.25. Apa yang kami dapat di sini bukanlah nilai integer bagi perbezaan, tetapi ia adalah nombor rasional, jadi formula untuk janjang algebra kekal sama.

Sekarang mari tambahkan perbezaan yang ditemui pada 1 dan pulihkan istilah janjang yang hilang. Kami mendapat: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, a 5 = 2.75 + 2.25 = 5, yang bertepatan dengan keadaan masalah.

Contoh No. 4: penggal pertama janjang

Mari teruskan memberi contoh janjang aritmetik dengan penyelesaian. Dalam semua masalah sebelumnya, nombor pertama janjang algebra diketahui. Sekarang mari kita pertimbangkan masalah jenis yang berbeza: biarkan dua nombor diberikan, di mana a 15 = 50 dan a 43 = 37. Ia adalah perlu untuk mencari nombor yang jujukan ini bermula.

Formula yang digunakan setakat ini menganggap pengetahuan tentang a 1 dan d. Dalam pernyataan masalah, tiada apa yang diketahui tentang nombor ini. Namun begitu, kami akan menulis ungkapan untuk setiap istilah mengenai maklumat yang tersedia: a 15 = a 1 + 14 * d dan a 43 = a 1 + 42 * d. Kami menerima dua persamaan di mana terdapat 2 kuantiti yang tidak diketahui (a 1 dan d). Ini bermakna bahawa masalah dikurangkan kepada menyelesaikan sistem persamaan linear.

Cara paling mudah untuk menyelesaikan sistem ini ialah dengan menyatakan 1 dalam setiap persamaan dan kemudian membandingkan ungkapan yang terhasil. Persamaan pertama: a 1 = a 15 - 14 * d = 50 - 14 * d; persamaan kedua: a 1 = a 43 - 42 * d = 37 - 42 * d. Menyamakan ungkapan ini, kita dapat: 50 - 14 * d = 37 - 42 * d, dari mana perbezaan d = (37 - 50) / (42 - 14) = - 0.464 (hanya 3 tempat perpuluhan diberikan).

Mengetahui d, anda boleh menggunakan mana-mana daripada 2 ungkapan di atas untuk 1. Contohnya, pertama: a 1 = 50 - 14 * d = 50 - 14 * (- 0.464) = 56.496.

Jika anda mempunyai keraguan tentang hasil yang diperoleh, anda boleh menyemaknya, sebagai contoh, tentukan penggal ke-43 perkembangan, yang dinyatakan dalam syarat. Kami mendapat: a 43 = a 1 + 42 * d = 56.496 + 42 * (- 0.464) = 37.008. Ralat kecil adalah disebabkan fakta bahawa pembundaran kepada perseribu telah digunakan dalam pengiraan.

Contoh No. 5: jumlah

Sekarang mari kita lihat beberapa contoh dengan penyelesaian untuk jumlah janjang aritmetik.

Biarkan janjang berangka bagi bentuk berikut diberikan: 1, 2, 3, 4, ...,. Bagaimana untuk mengira jumlah 100 nombor ini?

Terima kasih kepada perkembangan teknologi komputer, adalah mungkin untuk menyelesaikan masalah ini, iaitu, menambah semua nombor secara berurutan, yang akan dilakukan oleh komputer sebaik sahaja seseorang menekan kekunci Enter. Walau bagaimanapun, masalah itu boleh diselesaikan secara mental jika anda memberi perhatian kepada fakta bahawa siri nombor yang dibentangkan adalah janjang algebra, dan perbezaannya adalah sama dengan 1. Menggunakan formula untuk jumlah, kita dapat: S n = n * ( a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Adalah menarik untuk diperhatikan bahawa masalah ini dipanggil "Gaussian" kerana pada awal abad ke-18 orang Jerman yang terkenal, yang masih berusia 10 tahun, dapat menyelesaikannya di kepalanya dalam beberapa saat. Budak itu tidak tahu formula untuk jumlah janjang algebra, tetapi dia perasan bahawa jika anda menambah nombor di hujung urutan secara berpasangan, anda sentiasa mendapat keputusan yang sama, iaitu, 1 + 100 = 2 + 99 = 3 + 98 = ..., dan kerana jumlah ini akan menjadi tepat 50 (100/2), maka untuk mendapatkan jawapan yang betul sudah cukup untuk mendarabkan 50 dengan 101.

Contoh No. 6: jumlah sebutan dari n hingga m

Lagi satu contoh tipikal jumlah janjang aritmetik adalah seperti berikut: diberi satu siri nombor: 3, 7, 11, 15, ..., anda perlu mencari jumlah sebutannya dari 8 hingga 14 akan sama dengan.

Masalah diselesaikan dengan dua cara. Yang pertama melibatkan mencari istilah yang tidak diketahui dari 8 hingga 14, dan kemudian menjumlahkannya secara berurutan. Oleh kerana terdapat beberapa istilah, kaedah ini tidak begitu intensif buruh. Namun begitu, adalah dicadangkan untuk menyelesaikan masalah ini menggunakan kaedah kedua, iaitu lebih universal.

Ideanya adalah untuk mendapatkan formula bagi jumlah janjang algebra antara sebutan m dan n, dengan n > m ialah integer. Untuk kedua-dua kes, kami menulis dua ungkapan untuk jumlah:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Oleh kerana n > m, adalah jelas bahawa jumlah ke-2 termasuk yang pertama. Kesimpulan terakhir bermakna jika kita mengambil perbezaan antara jumlah ini dan menambah istilah a m kepadanya (dalam kes mengambil perbezaan, ia ditolak daripada jumlah S n), kita akan memperoleh jawapan yang diperlukan untuk masalah itu. Kami mempunyai: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Ia adalah perlu untuk menggantikan formula untuk a n dan a m ke dalam ungkapan ini. Kemudian kita dapat: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Formula yang terhasil agak rumit, walau bagaimanapun, jumlah S mn hanya bergantung pada n, m, a 1 dan d. Dalam kes kita, a 1 = 3, d = 4, n = 14, m = 8. Menggantikan nombor ini, kita mendapat: S mn = 301.

Seperti yang dapat dilihat daripada penyelesaian di atas, semua masalah adalah berdasarkan pengetahuan tentang ungkapan untuk sebutan ke-n dan formula untuk jumlah set sebutan pertama. Sebelum mula menyelesaikan mana-mana masalah ini, disyorkan agar anda membaca dengan teliti syarat, memahami dengan jelas apa yang anda perlukan untuk mencari, dan hanya kemudian meneruskan penyelesaiannya.

Petua lain ialah berusaha untuk kesederhanaan, iaitu, jika anda boleh menjawab soalan tanpa menggunakan pengiraan matematik yang rumit, maka anda perlu berbuat demikian, kerana dalam kes ini kemungkinan membuat kesilapan adalah kurang. Sebagai contoh, dalam contoh janjang aritmetik dengan penyelesaian No. 6, seseorang boleh berhenti pada formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, dan bahagikan masalah keseluruhan kepada subtugas yang berasingan (V dalam kes ini cari dahulu sebutan a n dan a m).

Jika anda mempunyai keraguan tentang keputusan yang diperoleh, adalah disyorkan untuk menyemaknya, seperti yang dilakukan dalam beberapa contoh yang diberikan. Kami mengetahui cara mencari janjang aritmetik. Jika anda memikirkannya, ia tidak begitu sukar.

Jenis pelajaran: pelajaran mempelajari bahan baharu.

Objektif pelajaran: Pembentukan konsep janjang aritmetik sebagai salah satu jenis jujukan, terbitan formula untuk sebutan ke-n, membiasakan diri dengan sifat ciri ahli janjang aritmetik. Penyelesaian masalah.

Objektif pelajaran:

  • Pendidikan- memperkenalkan konsep janjang aritmetik; formula penggal ke-n;
  • sifat ciri yang dimiliki oleh ahli janjang aritmetik. Perkembangan
  • - membangunkan keupayaan untuk membandingkan konsep matematik, mencari persamaan dan perbezaan, keupayaan untuk memerhati, melihat corak, dan menaakul dengan analogi; untuk membangunkan keupayaan untuk membina dan mentafsir model matematik bagi beberapa situasi sebenar. Pendidikan

- menggalakkan minat dalam matematik dan aplikasinya, aktiviti, keupayaan untuk berkomunikasi, dan mempertahankan pandangan seseorang dengan alasan.

Peralatan: komputer, projektor multimedia, persembahan (Lampiran 1)

Buku Teks: Algebra 9, Yu.N. Makarychev, N.G. Mindyuk, K.N.

  1. Rancangan pengajaran: Detik organisasi
  2. , penyataan masalah
  3. Mengemas kini pengetahuan, kerja lisan
  4. Mempelajari bahan baharu
  5. Penggabungan utama
  6. Merumuskan pelajaran

Kerja rumah

Untuk meningkatkan kejelasan dan kemudahan bekerja dengan bahan, pelajaran disertai dengan pembentangan. Walau bagaimanapun, ini bukanlah satu keperluan dan pelajaran yang sama boleh diajar di dalam bilik darjah yang tidak dilengkapi dengan peralatan multimedia. Untuk tujuan ini, data yang diperlukan boleh disediakan di papan atau dalam bentuk jadual dan poster.

Kemajuan pelajaran

I. Detik organisasi, pernyataan masalah.

salam. pandangan umum ia mempunyai, mari kita ketahui cara membezakan janjang aritmetik daripada jujukan lain dan menyelesaikan masalah yang menggunakan sifat janjang aritmetik.

II. Mengemas kini pengetahuan, kerja lisan.

Urutan () diberikan oleh formula: =. Apakah nombor ahli bagi jujukan ini jika ia ialah 144? 225? 100? Adakah nombor 48 ahli urutan ini? 49? 168?

Adalah diketahui tentang urutan () bahawa, . Apakah kaedah untuk menentukan urutan ini dipanggil? Cari empat sebutan pertama bagi jujukan ini.

Adalah diketahui tentang urutan () bahawa . Apakah kaedah menentukan urutan ini dipanggil? Cari jika?

III. Mempelajari bahan baharu.

Kemajuan ialah urutan kuantiti, setiap satu daripadanya berada dalam pergantungan tertentu pada yang sebelumnya, biasa kepada keseluruhan janjang. Istilah ini kini sebahagian besarnya ketinggalan zaman dan hanya terdapat dalam gabungan "janjang aritmetik" dan "janjang geometri".

Istilah "kemajuan" berasal dari bahasa Latin (kemajuan, yang bermaksud "bergerak ke hadapan") dan diperkenalkan oleh pengarang Rom Boethius (abad ke-6). Dalam matematik, istilah ini sebelum ini digunakan untuk merujuk kepada mana-mana urutan nombor yang dibina mengikut undang-undang yang membolehkan jujukan ini diteruskan selama-lamanya dalam satu arah. Pada masa ini, istilah "kemajuan" tidak digunakan dalam erti kata asalnya yang luas. Dua jenis janjang tertentu yang penting - aritmetik dan geometri - telah mengekalkan nama mereka.

Pertimbangkan urutan nombor:

  • 2, 6, 10, 14, 18, :.
  • 11, 8, 5, 2, -1, :.
  • 5, 5, 5, 5, 5, :.

Apakah sebutan ketiga bagi urutan pertama? Ahli seterusnya? Ahli sebelumnya? Apakah perbezaan antara sebutan kedua dan pertama? Ahli ketiga dan kedua? Keempat dan ketiga?

Jika jujukan itu dibina mengikut undang-undang yang sama, simpulkan apakah perbezaan antara sebutan keenam dan kelima bagi jujukan pertama? Antara tujuh dan enam?

Namakan dua sebutan seterusnya bagi setiap jujukan. Mengapa anda fikir begitu?

(Jawapan pelajar)

apa harta bersama adakah urutan ini mempunyai? Nyatakan harta ini.

(Jawapan pelajar)

Urutan nombor yang mempunyai sifat ini dipanggil janjang aritmetik. Jemput pelajar untuk cuba merumus definisi sendiri.

Takrif janjang aritmetik: janjang aritmetik ialah jujukan di mana setiap ahli, bermula dari yang kedua, adalah sama dengan yang sebelumnya ditambah kepada nombor yang sama:

( - janjang aritmetik, jika , di manakah beberapa nombor.

Nombor d, menunjukkan berapa banyak perbezaan ahli urutan seterusnya daripada yang sebelumnya, dipanggil perbezaan janjang: .

Mari kita lihat urutan sekali lagi dan bercakap tentang perbezaannya. Apakah ciri yang ada pada setiap jujukan dan apakah kaitannya?

Jika perbezaan dalam janjang aritmetik adalah positif, maka janjang itu meningkat: 2, 6, 10, 14, 18, :. (

Jika dalam janjang aritmetik perbezaannya adalah negatif ( , maka janjang itu berkurangan: 11, 8, 5, 2, -1, :. (

Jika perbezaan adalah sifar () dan semua sebutan janjang adalah sama dengan nombor yang sama, jujukan itu dipanggil pegun: 5, 5, 5, 5, :.

Bagaimana untuk menetapkan janjang aritmetik? Mari kita pertimbangkan masalah berikut.

Tugasan. Terdapat 50 tan arang batu di dalam gudang pada 1hb. Setiap hari selama sebulan, lori dengan 3 tan arang batu tiba di gudang. Berapa banyak arang batu akan berada di dalam gudang pada 30hb, jika tiada arang yang digunakan dari gudang pada masa ini.

Jika kita menulis jumlah arang batu dalam simpanan untuk setiap nombor, kita mendapat janjang aritmetik. Bagaimana untuk menyelesaikan masalah ini? Adakah anda benar-benar perlu mengira jumlah arang batu pada setiap hari dalam bulan itu? Adakah mungkin untuk melakukannya tanpa ini? Kami ambil perhatian bahawa menjelang 30hb, 29 kereta dengan arang batu akan tiba di gudang. Oleh itu, pada 30hb akan ada 50 + 329 = 137 tan arang batu di gudang.

Oleh itu, dengan hanya mengetahui sebutan pertama janjang aritmetik dan perbezaannya, kita boleh mencari sebarang sebutan bagi jujukan itu. Adakah ini selalu berlaku?

Mari kita analisa bagaimana setiap sebutan bagi jujukan bergantung pada sebutan pertama dan perbezaannya:

Oleh itu, kita telah memperoleh formula bagi sebutan ke-n bagi janjang aritmetik.

Contoh 1. Urutan () ialah janjang aritmetik. Cari jika dan .

Mari kita gunakan formula untuk penggal ke-n ,

Jawapan: 260.

Pertimbangkan masalah berikut:

Dalam janjang aritmetik, sebutan genap telah dipadamkan: 3, :, 7, :, 13: Adakah mungkin untuk memulihkan nombor yang hilang?

Pelajar mungkin terlebih dahulu mengira perbezaan janjang itu dan kemudian mencari sebutan janjang yang tidak diketahui. Kemudian anda boleh meminta mereka mencari hubungan antara ahli jujukan yang tidak diketahui, yang sebelumnya dan yang seterusnya.

Penyelesaian: Marilah kita mengambil kesempatan daripada fakta bahawa dalam janjang aritmetik perbezaan antara sebutan jiran adalah malar. Biarkan menjadi ahli urutan yang dikehendaki. Kemudian

.

Komen. Sifat janjang aritmetik ini ialah sifat cirinya. Ini bermakna dalam mana-mana janjang aritmetik setiap sebutan, bermula dari yang kedua, adalah sama dengan min aritmetik yang sebelumnya dan yang berikutnya ( . Dan, sebaliknya, sebarang jujukan di mana setiap sebutan, bermula dari yang kedua, adalah sama dengan min aritmetik yang sebelumnya dan yang berikutnya adalah janjang aritmetik.

IV. Penggabungan utama.

  • No. 575 ab - secara lisan
  • No. 576 avd - secara lisan
  • No. 577b - secara bebas dengan pengesahan

Jujukan (adalah janjang aritmetik. Cari jika dan

Mari kita gunakan formula untuk sebutan ke-n,

Jawapan: -24.2.

Cari sebutan ke-23 dan ke-n bagi janjang aritmetik -8; -6.5; :

Penyelesaian: Sebutan pertama janjang aritmetik ialah -8. Mari cari perbezaan janjang aritmetik; untuk melakukan ini, kita perlu menolak yang sebelumnya daripada sebutan seterusnya bagi urutan: -6.5-(-8) = 1.5.

Mari kita gunakan formula untuk penggal ke-n.

Sebelum kita mula membuat keputusan masalah janjang aritmetik, mari kita pertimbangkan apa itu jujukan nombor, kerana janjang aritmetik ialah kes khas bagi jujukan nombor.

Urutan nombor ialah set nombor, setiap elemen mempunyai sendiri nombor siri . Unsur-unsur set ini dipanggil ahli jujukan. Nombor siri unsur jujukan ditunjukkan oleh indeks:

Elemen pertama urutan;

Elemen kelima jujukan;

- unsur "n" bagi jujukan, i.e. elemen "berdiri dalam barisan" pada nombor n.

Terdapat hubungan antara nilai unsur jujukan dan nombor jujukannya. Oleh itu, kita boleh menganggap jujukan sebagai fungsi yang hujahnya ialah nombor ordinal bagi unsur jujukan. Dalam erti kata lain, kita boleh mengatakan bahawa urutan adalah fungsi hujah semula jadi:

Urutan boleh ditetapkan dalam tiga cara:

1 . Urutan boleh ditentukan menggunakan jadual. Dalam kes ini, kami hanya menetapkan nilai setiap ahli jujukan.

Sebagai contoh, Seseorang memutuskan untuk mengambil pengurusan masa peribadi, dan untuk memulakan, hitung berapa banyak masa yang dia habiskan di VKontakte sepanjang minggu. Dengan merekodkan masa dalam jadual, dia akan menerima urutan yang terdiri daripada tujuh elemen:

Baris pertama jadual menunjukkan bilangan hari dalam seminggu, yang kedua - masa dalam minit. Kami melihat bahawa, iaitu, pada hari Isnin Seseorang menghabiskan 125 minit di VKontakte, iaitu, pada hari Khamis - 248 minit, dan, iaitu, pada hari Jumaat hanya 15.

2 . Urutan boleh ditentukan menggunakan formula sebutan ke-n.

Dalam kes ini, pergantungan nilai unsur jujukan pada nombornya dinyatakan secara langsung dalam bentuk formula.

Contohnya, jika , maka

Untuk mencari nilai unsur jujukan dengan nombor tertentu, kami menggantikan nombor unsur ke dalam formula sebutan ke-n.

Kita melakukan perkara yang sama jika kita perlu mencari nilai fungsi jika nilai hujah diketahui. Kami menggantikan nilai hujah ke dalam persamaan fungsi:

Jika, sebagai contoh, , Itu

Biar saya perhatikan sekali lagi bahawa dalam urutan, tidak seperti fungsi berangka arbitrari, hujah hanya boleh menjadi nombor asli.

3 . Urutan boleh ditentukan menggunakan formula yang menyatakan pergantungan nilai jujukan nombor anggota n pada nilai ahli sebelumnya.

Dalam kes ini, tidak cukup untuk kita mengetahui nombor ahli jujukan sahaja untuk mencari nilainya. Kita perlu menentukan ahli pertama atau beberapa ahli pertama jujukan. ,

Sebagai contoh, pertimbangkan urutan Kita boleh mencari nilai ahli jujukan satu persatu

, bermula dari yang ketiga: Iaitu, setiap kali, untuk mencari nilai sebutan ke-n bagi jujukan, kita kembali kepada dua sebelumnya. Kaedah untuk menentukan urutan ini dipanggil berulang , daripada perkataan Latin berulang

- kembali.

Sekarang kita boleh menentukan janjang aritmetik. Janjang aritmetik ialah kes khas yang mudah bagi jujukan nombor. Janjang aritmetik


ialah urutan berangka, setiap ahli yang, bermula dari yang kedua, adalah sama dengan yang sebelumnya ditambah kepada nombor yang sama. Nombor dipanggil perbezaan janjang aritmetik

. Perbezaan janjang aritmetik boleh positif, negatif atau sama dengan sifar.">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} Jika title="d>0.

semakin meningkat

Sebagai contoh, 2; 5; 8; 11;... Jika , maka setiap sebutan janjang aritmetik adalah kurang daripada yang sebelumnya, dan janjangnya adalah.

semakin berkurangan

Sebagai contoh, 2; -1; -4; -7;... Jika , maka semua sebutan janjang adalah sama dengan nombor yang sama, dan janjangnya ialah.

pegun

Contohnya, 2;2;2;2;...

Sifat utama janjang aritmetik:

Jom tengok gambar.

Kita nampak itu

, dan pada masa yang sama

.

Menambah dua kesamaan ini, kita dapat:

Mari bahagikan kedua-dua belah kesamaan dengan 2:

Jadi, setiap ahli janjang aritmetik, bermula dari yang kedua, adalah sama dengan min aritmetik bagi dua yang berjiran:

Kita nampak itu

Lebih-lebih lagi, sejak

, Itu

, dan oleh itu">, равен среднему арифметическому двух равноотстоящих. !}

Setiap sebutan janjang aritmetik, bermula dengan tajuk="k>l

Formula penggal ke.

Kami melihat bahawa sebutan janjang aritmetik memenuhi hubungan berikut:

dan akhirnya Kami dapat

rumus sebutan ke-n. Mana-mana ahli janjang aritmetik boleh dinyatakan melalui dan. Mengetahui sebutan pertama dan perbezaan janjang aritmetik, anda boleh menemui mana-mana istilahnya.

Jumlah n sebutan bagi suatu janjang aritmetik.

Dalam janjang aritmetik arbitrari, jumlah sebutan yang sama jarak dari yang melampau adalah sama antara satu sama lain:

Pertimbangkan janjang aritmetik dengan n sebutan. Biarkan jumlah n sebutan janjang ini sama dengan .

Mari kita susun istilah janjang dahulu dalam tertib nombor menaik, dan kemudian dalam tertib menurun:

Mari tambah secara berpasangan:

Jumlah dalam setiap kurungan ialah , bilangan pasangan ialah n.

Kami mendapat:

Jadi, jumlah n sebutan bagi suatu janjang aritmetik boleh didapati menggunakan rumus:

Mari kita pertimbangkan menyelesaikan masalah janjang aritmetik.

1 . Urutan diberikan oleh formula sebutan ke-n: . Buktikan bahawa jujukan ini ialah janjang aritmetik.

Mari kita buktikan bahawa perbezaan antara dua sebutan yang bersebelahan bagi jujukan adalah sama dengan nombor yang sama.

Kami mendapati bahawa perbezaan antara dua ahli urutan yang bersebelahan tidak bergantung pada nombor mereka dan adalah pemalar. Oleh itu, mengikut definisi, jujukan ini ialah janjang aritmetik.

2 . Diberi janjang aritmetik -31; -27;...

a) Cari 31 sebutan janjang itu.

b) Tentukan sama ada nombor 41 termasuk dalam janjang ini.

A) Kami melihat bahawa;

Mari kita tulis formula untuk penggal ke-n untuk perkembangan kita.

Secara amnya

Dalam kes kita , Itulah sebabnya

Nota penting!
1. Jika anda melihat gobbledygook dan bukannya formula, kosongkan cache anda. Bagaimana untuk melakukan ini dalam penyemak imbas anda ditulis di sini:
2. Sebelum anda mula membaca artikel itu, perhatikan pelayar kami sepenuhnya sumber yang berguna Untuk

Urutan nombor

Jadi, mari kita duduk dan mula menulis beberapa nombor. Contohnya:
Anda boleh menulis sebarang nombor, dan boleh ada seberapa banyak nombor yang anda suka (dalam kes kami, ada mereka). Tidak kira berapa banyak nombor yang kita tulis, kita sentiasa boleh menyebut yang mana satu pertama, yang mana satu kedua, dan seterusnya sehingga yang terakhir, iaitu, kita boleh menomborkannya. Ini adalah contoh urutan nombor:

Urutan nombor
Sebagai contoh, untuk urutan kami:

Nombor yang diberikan adalah khusus untuk hanya satu nombor dalam urutan. Dalam erti kata lain, tiada tiga nombor saat dalam urutan itu. Nombor kedua (seperti nombor ke) sentiasa sama.
Nombor dengan nombor dipanggil sebutan ke-jujukan.

Kami biasanya memanggil keseluruhan jujukan dengan beberapa huruf (contohnya,), dan setiap ahli jujukan ini adalah huruf yang sama dengan indeks yang sama dengan nombor ahli ini: .

Dalam kes kami:

Katakan kita mempunyai urutan nombor di mana perbezaan antara nombor bersebelahan adalah sama dan sama.
Contohnya:

dll.
Urutan nombor ini dipanggil janjang aritmetik.
Istilah "kemajuan" telah diperkenalkan oleh pengarang Rom Boethius pada abad ke-6 dan difahami dalam erti kata yang lebih luas sebagai urutan berangka yang tidak terhingga. Nama "aritmetik" dipindahkan dari teori perkadaran berterusan, yang dikaji oleh orang Yunani kuno.

Ini ialah urutan nombor, setiap ahlinya adalah sama dengan yang sebelumnya ditambah kepada nombor yang sama. Nombor ini dipanggil perbezaan janjang aritmetik dan ditetapkan.

Cuba tentukan urutan nombor yang merupakan janjang aritmetik dan yang bukan:

a)
b)
c)
d)

faham? Mari bandingkan jawapan kami:
Adakah janjang aritmetik - b, c.
bukan janjang aritmetik - a, d.

Mari kembali ke janjang yang diberikan () dan cuba cari nilai sebutan ke-nya. wujud dua cara untuk mencarinya.

1. Kaedah

Kita boleh menambah nombor janjang kepada nilai sebelumnya sehingga kita mencapai sebutan ke-janjang itu. Ada baiknya kita tidak mempunyai banyak perkara untuk diringkaskan - hanya tiga nilai:

Jadi, sebutan ke janjang aritmetik yang diterangkan adalah sama dengan.

2. Kaedah

Bagaimana jika kita perlu mencari nilai sebutan ke-kemajuan itu? Penjumlahan akan mengambil masa lebih daripada satu jam, dan bukan fakta bahawa kita tidak akan membuat kesilapan semasa menambah nombor.
Sudah tentu, ahli matematik telah menghasilkan satu cara yang tidak perlu menambah perbezaan janjang aritmetik kepada nilai sebelumnya. Perhatikan gambar yang dilukis dengan lebih dekat... Pasti anda sudah perasan corak tertentu iaitu:

Sebagai contoh, mari kita lihat apakah nilai sebutan ke-dalam janjang aritmetik ini terdiri daripada:


Dengan kata lain:

Cuba cari sendiri nilai ahli janjang aritmetik tertentu dengan cara ini.

Adakah anda mengira? Bandingkan nota anda dengan jawapan:

Sila ambil perhatian bahawa anda mendapat nombor yang sama seperti dalam kaedah sebelumnya, apabila kami secara berurutan menambah istilah janjang aritmetik kepada nilai sebelumnya.
Mari cuba "menyahperibadi" formula ini - mari letakkannya dalam bentuk umum dan dapatkan:

Persamaan janjang aritmetik.

Janjang aritmetik boleh meningkat atau menurun.

Bertambah- janjang di mana setiap nilai terma berikutnya adalah lebih besar daripada yang sebelumnya.
Contohnya:

Menurun- janjang di mana setiap nilai terma berikutnya adalah kurang daripada yang sebelumnya.
Contohnya:

Formula terbitan digunakan dalam pengiraan sebutan dalam kedua-dua sebutan meningkat dan menurun bagi janjang aritmetik.
Mari kita semak ini dalam amalan.
Kami diberi janjang aritmetik yang terdiri daripada nombor berikut: Mari kita semak apakah nombor ke janjang aritmetik ini jika kita menggunakan formula kita untuk mengiranya:


Sejak itu:

Oleh itu, kami yakin bahawa formula beroperasi dalam kedua-dua janjang aritmetik menurun dan meningkat.
Cuba cari sendiri sebutan ke dan ke bagi janjang aritmetik ini.

Mari bandingkan hasilnya:

Sifat janjang aritmetik

Mari kita rumitkan masalah - kita akan memperoleh sifat janjang aritmetik.
Katakan kita diberi syarat berikut:
- janjang aritmetik, cari nilai.
Mudah, anda katakan dan mula mengira mengikut formula yang anda sudah tahu:

Mari, ah, kemudian:

benar sekali. Ternyata kita mula-mula mencari, kemudian menambahnya pada nombor pertama dan mendapatkan apa yang kita cari. Jika perkembangan diwakili oleh nilai kecil, maka tidak ada yang rumit mengenainya, tetapi bagaimana jika kita diberi nombor dalam keadaan? Setuju, terdapat kemungkinan membuat kesilapan dalam pengiraan.
Sekarang fikirkan sama ada mungkin untuk menyelesaikan masalah ini dalam satu langkah menggunakan sebarang formula? Sudah tentu ya, dan itulah yang akan kami cuba kemukakan sekarang.

Mari kita nyatakan istilah yang diperlukan bagi janjang aritmetik sebagai, formula untuk mencarinya diketahui oleh kita - ini adalah formula yang sama yang kita perolehi pada mulanya:
, Kemudian:

  • istilah janjang sebelumnya ialah:
  • istilah janjang seterusnya ialah:

Mari kita rumuskan istilah janjang sebelumnya dan seterusnya:

Ternyata jumlah terma janjang sebelumnya dan seterusnya ialah nilai berganda bagi sebutan janjang yang terletak di antara keduanya. Dalam erti kata lain, untuk mencari nilai istilah janjang dengan nilai sebelumnya dan berturut-turut yang diketahui, anda perlu menambahnya dan membahagikannya dengan.

Betul, kami mendapat nombor yang sama. Mari selamatkan bahan. Kira nilai untuk kemajuan itu sendiri, ia sama sekali tidak sukar.

Syabas! Anda tahu hampir segala-galanya tentang kemajuan! Tinggal untuk mengetahui hanya satu formula, yang, menurut legenda, mudah disimpulkan oleh salah seorang ahli matematik terhebat sepanjang masa, "raja ahli matematik" - Karl Gauss...

Apabila Carl Gauss berumur 9 tahun, seorang guru, sibuk memeriksa kerja pelajar di kelas lain, bertanya masalah berikut di dalam kelas: "Kira jumlah semua nombor asli daripada kepada (mengikut sumber lain sehingga) termasuk.” Bayangkan guru terkejut apabila salah seorang pelajarnya (ialah Karl Gauss) seminit kemudian memberikan jawapan yang betul untuk tugas itu, manakala kebanyakan rakan sekelas daredevil, selepas pengiraan yang panjang, menerima keputusan yang salah...

Carl Gauss muda melihat corak tertentu yang anda juga boleh perasan dengan mudah.
Katakan kita mempunyai janjang aritmetik yang terdiri daripada sebutan -th: Kita perlu mencari jumlah sebutan janjang aritmetik ini. Sudah tentu, kita boleh menjumlahkan semua nilai secara manual, tetapi bagaimana jika tugas itu memerlukan mencari jumlah istilahnya, seperti yang dicari oleh Gauss?

Mari kita gambarkan perkembangan yang diberikan kepada kita. Lihat lebih dekat pada nombor yang diserlahkan dan cuba lakukan pelbagai operasi matematik dengan mereka.


Sudahkah anda mencubanya? Apa yang awak perasan? Betul! Jumlah mereka adalah sama


Sekarang beritahu saya, berapakah jumlah pasangan sebegitu yang terdapat dalam janjang yang diberikan kepada kita? Sudah tentu, tepat separuh daripada semua nombor, iaitu.
Berdasarkan fakta bahawa jumlah dua sebutan janjang aritmetik adalah sama, dan pasangan yang serupa adalah sama, kita memperoleh bahawa jumlah keseluruhan adalah sama dengan:
.
Oleh itu, formula untuk jumlah sebutan pertama mana-mana janjang aritmetik ialah:

Dalam beberapa masalah kita tidak tahu istilah ke-, tetapi kita tahu perbezaan perkembangannya. Cuba gantikan formula sebutan ke dalam formula jumlah.
Apa yang awak dapat?

Syabas! Sekarang mari kita kembali kepada masalah yang ditanyakan kepada Carl Gauss: hitung sendiri apakah jumlah nombor yang bermula dari -th sama dengan dan jumlah nombor bermula dari -th.

Berapa banyak yang anda dapat?
Gauss mendapati bahawa jumlah istilah adalah sama, dan jumlah istilah. Adakah itu yang anda putuskan?

Malah, formula untuk jumlah sebutan janjang aritmetik telah dibuktikan oleh saintis Yunani purba Diophantus pada abad ke-3, dan sepanjang masa ini, orang cerdik menggunakan sepenuhnya sifat janjang aritmetik.
Sebagai contoh, bayangkan Mesir Purba dan projek pembinaan terbesar pada masa itu - pembinaan piramid... Gambar menunjukkan sebelahnya.

Di manakah perkembangan di sini, anda katakan? Lihat dengan teliti dan cari corak dalam bilangan blok pasir dalam setiap baris dinding piramid.


Mengapa bukan janjang aritmetik? Kira berapa banyak blok yang diperlukan untuk membina satu dinding jika bata blok diletakkan di pangkalan. Saya harap anda tidak akan mengira semasa menggerakkan jari anda pada monitor, anda masih ingat formula terakhir dan semua yang kami katakan tentang janjang aritmetik?

Dalam kes ini, perkembangan kelihatan seperti ini: .
Perbezaan janjang aritmetik.
Bilangan sebutan bagi suatu janjang aritmetik.
Mari kita gantikan data kita ke dalam formula terakhir (kira bilangan blok dalam 2 cara).

Kaedah 1.

Kaedah 2.

Dan kini anda boleh mengira pada monitor: bandingkan nilai yang diperoleh dengan bilangan blok yang ada dalam piramid kami. faham? Syabas, anda telah menguasai jumlah sebutan ke-n suatu janjang aritmetik.
Sudah tentu, anda tidak boleh membina piramid dari blok di pangkalan, tetapi dari? Cuba kira berapa banyak bata pasir yang diperlukan untuk membina dinding dengan keadaan ini.
Adakah anda berjaya?
Jawapan yang betul ialah blok:

Latihan

Tugasan:

  1. Masha semakin sihat untuk musim panas. Setiap hari dia menambah bilangan cangkung. Berapa kali Masha akan melakukan squats dalam seminggu jika dia melakukan squats pada sesi latihan pertama?
  2. Apakah hasil tambah semua nombor ganjil yang terkandung dalam.
  3. Apabila menyimpan balak, pembalak menyusunnya sedemikian rupa sehingga setiap satu lapisan atas mengandungi satu log kurang daripada yang sebelumnya. Berapa banyak kayu balak dalam satu batu, jika asas batu itu ialah kayu balak?

Jawapan:

  1. Mari kita tentukan parameter janjang aritmetik. Dalam kes ini
    (minggu = hari).

    Jawapan: Dalam dua minggu, Masha perlu melakukan squat sekali sehari.

  2. Nombor ganjil pertama, nombor terakhir.
    Perbezaan janjang aritmetik.
    Bilangan nombor ganjil dalam ialah separuh, bagaimanapun, mari kita semak fakta ini menggunakan formula untuk mencari sebutan ke satu janjang aritmetik:

    Nombor memang mengandungi nombor ganjil.
    Mari kita gantikan data yang ada ke dalam formula:

    Jawapan: Jumlah semua nombor ganjil yang terkandung dalam adalah sama.

  3. Mari kita ingat masalah tentang piramid. Untuk kes kami, a , kerana setiap lapisan atas dikurangkan dengan satu log, maka secara keseluruhan terdapat sekumpulan lapisan, iaitu.
    Mari kita gantikan data ke dalam formula:

    Jawapan: Terdapat kayu balak di dalam batu.

Mari kita ringkaskan

  1. - urutan nombor di mana perbezaan antara nombor bersebelahan adalah sama dan sama. Ia boleh meningkat atau menurun.
  2. Mencari formula Sebutan ke-1 bagi suatu janjang aritmetik ditulis dengan formula - , di mana ialah bilangan nombor dalam janjang itu.
  3. Harta ahli sesuatu janjang aritmetik- - di manakah bilangan nombor dalam kemajuan.
  4. Jumlah sebutan bagi suatu janjang aritmetik boleh didapati dalam dua cara:

    , di manakah bilangan nilai.

PERKEMBANGAN AITMETIK. PERINGKAT TENGAH

Urutan nombor

Mari duduk dan mula menulis beberapa nombor. Contohnya:

Anda boleh menulis sebarang nombor, dan boleh ada seberapa banyak nombor yang anda suka. Tetapi kita sentiasa boleh mengatakan yang mana satu dahulu, yang mana satu kedua, dan seterusnya, iaitu, kita boleh menomborkannya. Ini adalah contoh urutan nombor.

Urutan nombor ialah satu set nombor, setiap satu daripadanya boleh diberikan nombor unik.

Dalam erti kata lain, setiap nombor boleh dikaitkan dengan nombor asli tertentu, dan nombor unik. Dan kami tidak akan memberikan nombor ini kepada mana-mana nombor lain daripada set ini.

Nombor dengan nombor dipanggil ahli ke-jujukan.

Kami biasanya memanggil keseluruhan jujukan dengan beberapa huruf (contohnya,), dan setiap ahli jujukan ini adalah huruf yang sama dengan indeks yang sama dengan nombor ahli ini: .

Ia adalah sangat mudah jika sebutan ke-jujukan boleh ditentukan oleh beberapa formula. Sebagai contoh, formula

menetapkan urutan:

Dan formulanya adalah urutan berikut:

Sebagai contoh, janjang aritmetik ialah jujukan (istilah pertama di sini adalah sama, dan perbezaannya ialah). Atau (, perbezaan).

formula penggal ke-n

Kami memanggil formula berulang di mana, untuk mengetahui istilah ke, anda perlu mengetahui yang sebelumnya atau beberapa yang sebelumnya:

Untuk mencari, sebagai contoh, sebutan ke-janjang menggunakan formula ini, kita perlu mengira sembilan sebelumnya. Sebagai contoh, biarkan. Kemudian:

Nah, adakah ia jelas sekarang apakah formulanya?

Dalam setiap baris yang kita tambah, didarab dengan beberapa nombor. yang mana satu? Sangat mudah: ini ialah bilangan ahli semasa tolak:

Jauh lebih mudah sekarang, bukan? Kami menyemak:

Tentukan sendiri:

Dalam janjang aritmetik, cari formula bagi sebutan ke-n dan cari sebutan keseratus.

Penyelesaian:

Sebutan pertama adalah sama. Apakah perbezaannya? Inilah yang:

(Inilah sebabnya ia dipanggil perbezaan kerana ia sama dengan perbezaan sebutan berturut-turut janjang).

Jadi, formulanya:

Maka sebutan keseratus adalah sama dengan:

Apakah hasil tambah semua nombor asli dari hingga?

Menurut legenda, ahli matematik yang hebat Karl Gauss, sebagai budak lelaki berusia 9 tahun, mengira jumlah ini dalam beberapa minit. Dia perasan bahawa jumlah nombor pertama dan terakhir adalah sama, jumlah kedua dan kedua terakhir adalah sama, jumlah ketiga dan ke-3 dari hujung adalah sama, dan seterusnya. Berapakah jumlah pasangan sedemikian? Betul, tepat separuh daripada bilangan semua nombor, iaitu. Jadi,

Formula umum untuk jumlah sebutan pertama mana-mana janjang aritmetik ialah:

Contoh:
Cari hasil tambah semua gandaan dua digit.

Penyelesaian:

Nombor yang pertama ialah ini. Setiap nombor berikutnya diperoleh dengan menambah nombor sebelumnya. Oleh itu, nombor yang kita minati membentuk janjang aritmetik dengan sebutan pertama dan perbezaannya.

Formula istilah ke-1 untuk janjang ini:

Berapakah bilangan yang terdapat dalam janjang jika kesemuanya mestilah dua digit?

Sangat mudah: .

Penggal terakhir janjang adalah sama. Kemudian jumlahnya:

Jawapan: .

Sekarang tentukan sendiri:

  1. Setiap hari atlet berlari lebih meter daripada hari sebelumnya. Berapakah jumlah kilometer yang dia akan larian dalam seminggu jika dia berlari km m pada hari pertama?
  2. Seorang penunggang basikal menempuh lebih banyak kilometer setiap hari berbanding hari sebelumnya. Pada hari pertama dia mengembara km. Berapa hari dia perlu menempuh perjalanan sejauh satu kilometer? Berapa kilometer yang akan dia tempuh pada hari terakhir perjalanannya?
  3. Harga peti sejuk di kedai menurun dengan jumlah yang sama setiap tahun. Tentukan berapa banyak harga peti sejuk menurun setiap tahun jika, dijual untuk rubel, enam tahun kemudian ia dijual untuk rubel.

Jawapan:

  1. Perkara yang paling penting di sini ialah mengenali janjang aritmetik dan menentukan parameternya. Dalam kes ini, (minggu = hari). Anda perlu menentukan jumlah sebutan pertama janjang ini:
    .
    Jawapan:
  2. Di sini ia diberikan: , mesti dijumpai.
    Jelas sekali, anda perlu menggunakan formula jumlah yang sama seperti dalam masalah sebelumnya:
    .
    Gantikan nilai:

    Akarnya jelas tidak sesuai, jadi jawapannya adalah.
    Mari kita mengira laluan yang dilalui pada hari terakhir menggunakan formula istilah ke-:
    (km).
    Jawapan:

  3. Diberi: . Cari: .
    Ia tidak boleh menjadi lebih mudah:
    (gosok).
    Jawapan:

PERKEMBANGAN AITMETIK. SECARA RINGKAS TENTANG PERKARA UTAMA

Ini ialah urutan nombor di mana perbezaan antara nombor bersebelahan adalah sama dan sama.

Janjang aritmetik boleh meningkat () dan menurun ().

Contohnya:

Formula untuk mencari sebutan ke-n suatu janjang aritmetik

ditulis oleh formula, di mana bilangan nombor dalam janjang.

Harta ahli sesuatu janjang aritmetik

Ia membolehkan anda mencari istilah janjang dengan mudah jika istilah jirannya diketahui - di manakah bilangan nombor dalam janjang itu.

Jumlah sebutan bagi suatu janjang aritmetik

Terdapat dua cara untuk mencari jumlah:

Di manakah bilangan nilai.

Di manakah bilangan nilai.

Nah, topik itu sudah tamat. Jika anda membaca baris ini, ini bermakna anda sangat keren.

Kerana hanya 5% orang yang mampu menguasai sesuatu dengan sendiri. Dan jika anda membaca sehingga habis, maka anda berada dalam 5% ini!

Sekarang perkara yang paling penting.

Anda telah memahami teori mengenai topik ini. Dan, saya ulangi, ini... ini sangat hebat! Anda sudah lebih baik daripada kebanyakan rakan sebaya anda.

Masalahnya ialah ini mungkin tidak mencukupi...

Untuk apa?

Untuk berjaya disiapkan Peperiksaan Negeri Bersepadu, untuk kemasukan ke kolej mengikut bajet dan, PALING PENTING, seumur hidup.

Saya tidak akan meyakinkan anda tentang apa-apa, saya hanya akan mengatakan satu perkara ...

Orang yang menerima pendidikan yang baik, memperoleh lebih banyak daripada mereka yang tidak menerimanya. Ini adalah statistik.

Tetapi ini bukan perkara utama.

Perkara utama ialah mereka LEBIH BAHAGIA (ada kajian sedemikian). Mungkin kerana banyak lagi peluang terbuka di hadapan mereka dan kehidupan menjadi lebih cerah? tidak tahu...

Tapi fikir sendiri...

Apakah yang diperlukan untuk memastikan anda menjadi lebih baik daripada yang lain pada Peperiksaan Negeri Bersepadu dan akhirnya... lebih bahagia?

DAPATKAN TANGAN ANDA DENGAN MENYELESAIKAN MASALAH MENGENAI TOPIK INI.

Anda tidak akan diminta untuk teori semasa peperiksaan.

Anda akan perlukan menyelesaikan masalah melawan masa.

Dan, jika anda belum menyelesaikannya (BANYAK!), anda pasti akan membuat kesilapan bodoh di suatu tempat atau tidak akan mempunyai masa.

Ia seperti dalam sukan - anda perlu mengulanginya berkali-kali untuk menang dengan pasti.

Cari koleksi di mana sahaja anda mahu, semestinya dengan penyelesaian, analisis terperinci dan tentukan, tentukan, tentukan!

Anda boleh menggunakan tugas kami (pilihan) dan kami, sudah tentu, mengesyorkannya.

Untuk menjadi lebih baik dalam menggunakan tugas kami, anda perlu membantu memanjangkan hayat buku teks YouClever yang sedang anda baca.

Bagaimana? Terdapat dua pilihan:

  1. Buka kunci semua tugas tersembunyi dalam artikel ini -
  2. Buka kunci akses kepada semua tugas tersembunyi dalam semua 99 artikel buku teks - Beli buku teks - 499 RUR

Ya, kami mempunyai 99 artikel sedemikian dalam buku teks kami dan akses kepada semua tugasan dan semua teks tersembunyi di dalamnya boleh dibuka serta-merta.

Akses kepada semua tugas tersembunyi disediakan untuk KESELURUHAN hayat tapak.

Dan kesimpulannya...

Jika anda tidak menyukai tugas kami, cari yang lain. Cuma jangan berhenti pada teori.

"Difahamkan" dan "Saya boleh selesaikan" adalah kemahiran yang sama sekali berbeza. Anda perlukan kedua-duanya.

Cari masalah dan selesaikan!