27 logaritmik denklem ile. Logaritmalar: örnekler ve çözümler

cephe

Cebir 11. sınıf

Konu: “Logaritmik denklemleri çözme yöntemleri”

Dersin Hedefleri:

eğitici: hakkında bilgi oluşumu farklı yollarla Logaritmik denklemleri çözme, bunları her denklemde uygulama becerisi özel durum ve çözmek için herhangi bir yöntemi seçin;

geliştirme: gözlemleme, karşılaştırma, bilgiyi yeni bir durumda uygulama, kalıpları belirleme, genelleme becerilerini geliştirmek; karşılıklı kontrol ve öz kontrol becerilerini geliştirmek;

eğitici: eğitim çalışmalarına karşı sorumlu bir tutum geliştirmek, dersteki materyalin dikkatli algılanması, dikkatli not alma.

Ders türü: yeni materyalin tanıtılması dersi.

"Logaritmanın icadı gökbilimcinin işini azaltırken ömrünü uzattı."
Fransız matematikçi ve gökbilimci P.S. Laplace

Dersler sırasında

I. Dersin hedefini belirlemek

Logaritmanın incelenen tanımı, logaritmanın özellikleri ve logaritmik fonksiyon, logaritmik denklemleri çözmemize olanak sağlayacaktır. Tüm logaritmik denklemler, ne kadar karmaşık olursa olsun, tek tip algoritmalar kullanılarak çözülür. Bugünkü dersimizde bu algoritmalara bakacağız. Birçoğu yok. Eğer bunlara hakim olursanız, logaritmalı herhangi bir denklem her biriniz için mümkün olacaktır.

Dersin konusunu not defterinize yazın: “Logaritmik denklemleri çözme yöntemleri.” Herkesi işbirliğine davet ediyorum.

II. Referans bilgilerinin güncellenmesi

Dersin konusunu çalışmaya hazırlanalım. Her görevi çözer ve cevabını yazarsınız; koşulu yazmanıza gerek yoktur. Çiftler halinde çalışın.

1) Fonksiyon hangi x değerleri için anlamlıdır:

(Cevaplar her slaytta kontrol edilir ve hatalar sıralanır)

2) Fonksiyonların grafikleri çakışıyor mu?

3) Eşitlikleri logaritmik eşitlikler olarak yeniden yazın:

4) Sayıları 2 tabanına göre logaritma olarak yazın:

5) Hesaplayın:

6) Bu eşitliklerdeki eksik unsurları tamamlamaya veya tamamlamaya çalışın.

III. Yeni malzemeye giriş

Ekranda aşağıdaki ifade görüntülenir:

“Denklem, tüm matematik susamlarını açan altın anahtardır.”
Modern Polonyalı matematikçi S. Kowal

Logaritmik bir denklemin tanımını formüle etmeye çalışın. ( Logaritma işareti altında bilinmeyeni içeren bir denklem).

Hadi düşünelim en basit logaritmik denklem:kayıtAx = b(burada a>0, a ≠ 1). Çünkü logaritmik fonksiyon Pozitif sayılar kümesinde artar (veya azalır) ve tüm gerçek değerleri alırsa, kök teoremine göre bu denklemin herhangi bir b için ve üstelik yalnızca bir çözümü ve pozitif bir çözümü olduğu sonucu çıkar.

Logaritmanın tanımını hatırlayın. (Bir x sayısının a tabanına göre logaritması, x sayısını elde etmek için a tabanının yükseltilmesi gereken kuvvetin bir göstergesidir). Logaritmanın tanımından hemen şu sonuç çıkar: AV böyle bir çözümdür.

Başlığı yazın: Logaritmik denklemleri çözme yöntemleri

1. Logaritmanın tanımı gereği.

Formun en basit denklemleri bu şekilde çözülür.

Hadi düşünelim 514(a) Sayısı): Denklemi çözün

Bunu nasıl çözmeyi öneriyorsunuz? (Logaritmanın tanımı gereği)

Çözüm. , Dolayısıyla 2x - 4 = 4; x = 4.

Bu görevde 2x - 4 > 0, > 0 olduğu için yabancı kökler görünemez ve kontrol etmeye gerek yoktur. Bu görevde 2x - 4 > 0 koşulunu yazmaya gerek yoktur.

2. Potansiyelleştirme(belirli bir ifadenin logaritmasından bu ifadenin kendisine geçiş).

Hadi düşünelim 519(g): log5(x2+8)-log5(x+1)=3log5 2

Hangi özelliği fark ettiniz? (Tabanlar aynıdır ve iki ifadenin logaritmaları eşittir.) Ne yapılabilir? (Güçlendirin).

Logaritmik ifadelerin pozitif olduğu tüm x'ler arasında herhangi bir çözümün yer aldığı dikkate alınmalıdır.

Çözüm: ODZ:

X2+8>0 gereksiz bir eşitsizliktir

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Orijinal denklemin potansiyelini artıralım

x2+8= 8x+8 denklemini elde ederiz

Hadi çözelim: x2-8x=0

Cevap: 0; 8

İÇİNDE Genel görünüm eşdeğer bir sisteme geçiş:

Denklem

(Sistem gereksiz bir koşul içeriyor - eşitsizliklerden birinin dikkate alınmasına gerek yok).

Sınıf için soru: Bu üç çözümden hangisini en çok beğendiniz? (Yöntemlerin tartışılması).

Her şekilde karar verme hakkına sahipsiniz.

3. Yeni bir değişkenin tanıtılması.

Hadi düşünelim 520(g). .

Ne fark ettin? (Bu ikinci dereceden denklem log3x ile ilgili) Önerileriniz? (Yeni bir değişken tanıtın)

Çözüm. ODZ: x > 0.

Diyelim ki denklem şu şekli alır:. Diskriminant D > 0. Vieta teoremine göre kökler:.

Değiştirme konusuna geri dönelim: veya.

En basit logaritmik denklemleri çözdükten sonra şunu elde ederiz:

Cevap: 27;

4. Denklemin her iki tarafının logaritması.

Denklemi çözün:.

Çözüm: ODZ: x>0, denklemin her iki tarafının 10 tabanındaki logaritmasını alın:

Bir kuvvetin logaritması özelliğini uygulayalım:

(logx + 3) logx = 4

logx = y olsun, o zaman (y + 3)y = 4

, (D > 0) kökleri Vieta teoremine göre: y1 = -4 ve y2 = 1.

Değiştirmeye geri dönelim, şunu elde ederiz: lgx = -4,; lgx = 1, .

Cevap: 0,0001; 10.

5. Tek tabana indirgeme.

523(c) sayılı. Denklemi çözün:

Çözüm: ODZ: x>0. 3. tabana geçelim.

6. Fonksiyonel-grafik yöntemi.

509(d). Denklemi grafiksel olarak çözün: = 3 - x.

Nasıl çözmeyi önerirsiniz? (Noktaları kullanarak y = log2x ve y = 3 - x olmak üzere iki fonksiyonun grafiklerini oluşturun ve grafiklerin kesişme noktalarının apsisini arayın).

Slayttaki çözümünüze bakın.

Grafik yapmaktan kaçınmanın bir yolu var . Aşağıdaki gibidir : işlevlerden biri ise y = f(x) artar, diğeri y = g(x) X aralığında azalırsa denklem f(x)=g(x) X aralığında en fazla bir kökü vardır.

Bir kök varsa tahmin edilebilir.

Bizim durumumuzda fonksiyon x>0 için artar ve y = 3 - x fonksiyonu x>0 da dahil olmak üzere x'in tüm değerleri için azalır, bu da denklemin birden fazla kökü olmadığı anlamına gelir. X = 2'de denklemin gerçek bir eşitliğe dönüştüğünü unutmayın, çünkü .

« Doğru kullanım yöntemler öğrenilebilir
yalnızca bunları uygulayarak çeşitli örnekler».
Danimarkalı matematik tarihçisi G. G. Zeiten

BENV. Ev ödevi

S. 39 örnek 3'ü ele alın, çözün No. 514(b), No. 529(b), No. 520(b), No. 523(b)

V. Dersin özetlenmesi

Derste logaritmik denklemleri çözmenin hangi yöntemlerine baktık?

Sonraki derslerde daha karmaşık denklemlere bakacağız. Bunları çözmek için çalışılan yöntemler faydalı olacaktır.

Gösterilen son slayt:

“Dünyada her şeyden daha fazla olan şey nedir?
Uzay.
En akıllıca şey nedir?
Zaman.
En iyi kısmı nedir?
İstediğinizi başarın."
Thales

Herkesin istediğini elde etmesini diliyorum. İşbirliğiniz ve anlayışınız için teşekkür ederiz.

Bugün hiçbir ön dönüşüme veya kök seçimine gerek olmayan en basit logaritmik denklemlerin nasıl çözüleceğini öğreneceğiz. Ancak bu tür denklemleri çözmeyi öğrenirseniz, o zaman çok daha kolay olacaktır.

En basit logaritmik denklem log a f(x) = b formundaki bir denklemdir; burada a, b sayılardır (a > 0, a ≠ 1), f(x) belirli bir fonksiyondur.

Tüm logaritmik denklemlerin ayırt edici bir özelliği, logaritma işaretinin altında x değişkeninin bulunmasıdır. Eğer problemde başlangıçta verilen denklem buysa buna en basit denir. Diğer logaritmik denklemler özel dönüşümlerle en basit hale getirilir (bkz. “Logaritmanın temel özellikleri”). Bununla birlikte, çok sayıda incelik dikkate alınmalıdır: Fazladan kökler ortaya çıkabilir, bu nedenle karmaşık logaritmik denklemler ayrı ayrı ele alınacaktır.

Bu tür denklemler nasıl çözülür? Eşittir işaretinin sağındaki sayıyı, soldaki ile aynı tabandaki bir logaritma ile değiştirmek yeterlidir. O zaman logaritmanın işaretinden kurtulabilirsiniz. Şunu elde ederiz:

log a f (x) = b ⇒ log a f (x) = log a a b ⇒ f (x) = a b

Her zamanki denklemi elde ettik. Kökleri orijinal denklemin kökleridir.

Derece çıkarmak

Genellikle dışarıdan karmaşık ve tehditkar görünen logaritmik denklemler, hiçbir müdahaleye gerek kalmadan birkaç satırda kelimenin tam anlamıyla çözülür. karmaşık formüller. Bugün tam da bu tür sorunlara bakacağız; sizden tek yapmanız gereken, formülü dikkatli bir şekilde kanonik forma indirgemek ve logaritmanın tanım alanını ararken kafanızın karışmamasıdır.

Bugün muhtemelen başlıktan da tahmin ettiğiniz gibi logaritmik denklemleri kanonik forma geçiş formüllerini kullanarak çözeceğiz. Bu video dersinin ana "püf noktası" derecelerle çalışmak, daha doğrusu dereceyi temelden ve argümandan çıkarmak olacaktır. Kurala bakalım:

Benzer şekilde, dereceyi tabandan türetebilirsiniz:

Görebildiğimiz gibi, logaritmanın argümanından dereceyi çıkardığımızda sadece önümüzde ek bir faktör varsa, o zaman dereceyi tabandan çıkardığımızda sadece bir faktör değil, tersine çevrilmiş bir faktör elde ederiz. Bunun hatırlanması gerekiyor.

Son olarak en ilginç şey. Bu formüller birleştirilebilir ve şunu elde ederiz:

Elbette, bu geçişleri yaparken, tanımın kapsamının olası genişlemesi veya tam tersine, tanımın kapsamının daralmasıyla ilgili bazı tuzaklar vardır. Kendiniz karar verin:

günlük 3 x 2 = 2 ∙ günlük 3 x

İlk durumda x, 0'dan farklı bir sayı olabiliyorsa, yani x ≠ 0 gereksinimi varsa, o zaman ikinci durumda yalnızca x ile tatmin oluruz; bunlar yalnızca eşit değildir, aynı zamanda 0'dan kesinlikle büyüktür, çünkü logaritmanın tanımı, argümanın kesinlikle 0'dan büyük olmasıdır. Bu nedenle size 8-9. sınıf cebir dersinden harika bir formülü hatırlatacağım:

Yani formülümüzü şu şekilde yazmamız gerekiyor:

log 3 x 2 = 2 ∙ log 3 |x |

O zaman tanımın kapsamı daralmayacaktır.

Ancak bugünkü video eğitiminde kareler olmayacak. Görevlerimize bakarsanız sadece kökleri göreceksiniz. Bu nedenle başvurunuz bu kural yapmayacağız, ancak yine de bunu aklınızda tutmanız gerekiyor ki doğru zamanda gördüğünüzde ikinci dereceden fonksiyon bir argümanda veya bir logaritmanın tabanında bu kuralı hatırlayacak ve tüm dönüşümleri doğru bir şekilde gerçekleştireceksiniz.

Yani ilk denklem şu:

Bu sorunu çözmek için formülde bulunan terimlerin her birine dikkatlice bakmayı öneriyorum.

İlk terimi rasyonel üssü olan bir kuvvet olarak yeniden yazalım:

İkinci terime bakıyoruz: log 3 (1 − x). Burada hiçbir şey yapmaya gerek yok, burada her şey zaten dönüşmüş durumda.

Son olarak 0, 5. Önceki derslerde de söylediğim gibi logaritmik denklem ve formülleri çözerken ondalık kesirlerden ortak kesirlere geçmenizi şiddetle tavsiye ederim. Bunu yapalım:

0,5 = 5/10 = 1/2

Ortaya çıkan terimleri dikkate alarak orijinal formülümüzü yeniden yazalım:

log 3 (1 - x) = 1

Şimdi kanonik forma geçelim:

günlük 3 (1 − x ) = günlük 3 3

Argümanları eşitleyerek logaritma işaretinden kurtuluruz:

1 - x = 3

−x = 2

x = −2

İşte bu, denklemi çözdük. Ancak yine de işi riske atalım ve tanımın alanını bulalım. Bunu yapmak için orijinal formüle geri dönelim ve şunu görelim:

1 - x > 0

−x > −1

X< 1

Kök x = −2 bu gereksinimi karşılıyor, dolayısıyla x = −2 orijinal denklemin bir çözümü. Şimdi elimizde kesin ve net bir gerekçe var. İşte bu, sorun çözüldü.

Gelelim ikinci göreve:

Her terime ayrı ayrı bakalım.

İlkini yazalım:

İlk dönemi dönüştürdük. İkinci dönemle çalışıyoruz:

Son olarak eşittir işaretinin sağındaki son terim:

Ortaya çıkan formüldeki terimler yerine ortaya çıkan ifadeleri değiştiririz:

günlük 3 x = 1

Kanonik forma geçelim:

günlük 3 x = günlük 3 3

Argümanları eşitleyerek logaritma işaretinden kurtuluruz ve şunu elde ederiz:

x = 3

Yine de tedbiri elden bırakmamak için orijinal denkleme geri dönüp bir göz atalım. Orijinal formülde x değişkeni yalnızca bağımsız değişkende mevcuttur, bu nedenle,

x > 0

İkinci logaritmada x kökün altındadır ama yine argümanda bu nedenle kök 0'dan büyük olmalıdır, yani radikal ifade 0'dan büyük olmalıdır. Kök x = 3'e bakıyoruz. bu gereksinimi karşılar. Dolayısıyla x = 3 orijinal logaritmik denklemin bir çözümüdür. İşte bu, sorun çözüldü.

Bugünkü video eğitiminde iki önemli nokta var:

1) logaritmaları dönüştürmekten korkmayın ve özellikle logaritmanın işaretinden kuvvetleri çıkarmaktan korkmayın, aynı zamanda temel formülümüzü hatırlayın: bir argümandan bir kuvveti çıkarırken, değişiklik yapılmadan basitçe çıkarılır çarpan olarak kullanılır ve tabandan bir güç kaldırıldığında bu güç tersine çevrilir.

2) ikinci nokta kanonik formun kendisiyle ilgilidir. Logaritmik denklem formülünün dönüşümünün en sonunda kanonik forma geçişi yaptık. Size şu formülü hatırlatayım:

a = log b b a

Elbette "herhangi bir sayı b" ifadesiyle, logaritmanın bazında dayatılan gereklilikleri karşılayan sayıları kastediyorum, yani.

1 ≠ b > 0

Böyle bir b için ve temelini zaten bildiğimiz için bu gereklilik otomatik olarak yerine getirilecektir. Ancak bu gereksinimi karşılayan herhangi bir b için bu geçiş gerçekleştirilebilir ve logaritmanın işaretinden kurtulabileceğimiz kanonik bir form elde ederiz.

Tanım alanını ve ekstra kökleri genişletmek

Logaritmik denklemlerin dönüştürülmesi sürecinde tanım alanının örtülü bir şekilde genişletilmesi meydana gelebilir. Çoğu zaman öğrenciler bunu fark etmezler, bu da hatalara ve yanlış cevaplara yol açar.

En basit tasarımlarla başlayalım. En basit logaritmik denklem şudur:

loga f(x) = b

X'in bir logaritmanın yalnızca bir bağımsız değişkeninde mevcut olduğuna dikkat edin. Bu tür denklemleri nasıl çözeriz? Kanonik formu kullanıyoruz. Bunu yapmak için b = log a a b sayısını hayal edin, denklemimiz şu şekilde yeniden yazılacaktır:

log a f (x) = log a a b

Bu girdiye kanonik form denir. Sadece bugünkü derste değil, aynı zamanda herhangi bir bağımsız ve test çalışmasında da karşılaşacağınız logaritmik denklemleri buna indirgemelisiniz.

Kanonik forma nasıl ulaşılacağı ve hangi tekniklerin kullanılacağı pratik meselesidir. Anlaşılması gereken en önemli şey, böyle bir kaydı alır almaz sorunun çözülmüş olduğunu düşünebilmenizdir. Çünkü bir sonraki adım şunu yazmaktır:

f(x) = a b

Başka bir deyişle logaritma işaretinden kurtulup basitçe argümanları eşitliyoruz.

Bütün bu konuşmalar neden? Gerçek şu ki, kanonik biçim yalnızca en basit sorunlara değil aynı zamanda diğer sorunlara da uygulanabilir. Özellikle bugün karar vereceklerimiz. Hadi bir göz atalım.

İlk görev:

Bu denklemdeki sorun nedir? Gerçek şu ki, fonksiyon aynı anda iki logaritmadadır. Bir logaritmanın diğerinden çıkarılmasıyla problem en basit haline indirilebilir. Ancak tanımlama alanında sorunlar ortaya çıkıyor: ekstra kökler görünebilir. Logaritmalardan birini sağa taşıyalım:

Bu giriş kanonik forma çok daha benzer. Ancak bir nüans daha var: Kanonik biçimde argümanlar aynı olmalıdır. Sol tarafta 3 tabanındaki logaritmayı, sağda ise 1/3 tabanındaki logaritmayı görüyoruz. Bu üslerin aynı sayıya getirilmesi gerektiğini biliyor. Örneğin negatif güçlerin ne olduğunu hatırlayalım:

Daha sonra çarpan olarak logun dışındaki “−1” üssünü kullanacağız:

Lütfen dikkat: Tabandaki derece ters çevrilir ve kesir haline getirilir. Farklı tabanlardan kurtularak neredeyse kanonik bir notasyon elde ettik ancak bunun karşılığında sağdaki “−1” faktörünü elde ettik. Bu faktörü bir kuvvete dönüştürerek argümana dahil edelim:

Tabii ki, kanonik formu aldıktan sonra, logaritmanın işaretini cesurca çizeriz ve argümanları eşitleriz. Aynı zamanda, kesirin “−1” üssüne yükseltildiğinde basitçe ters çevrildiğini - bir oran elde edildiğini hatırlatmama izin verin.

Oranın temel özelliğini kullanalım ve bunu çapraz olarak çarpalım:

(x - 4) (2x - 1) = (x - 5) (3x - 4)

2x 2 − x − 8x + 4 = 3x 2 − 4x − 15x + 20

2x 2 − 9x + 4 = 3x 2 − 19x + 20

x 2 − 10x + 16 = 0

Önümüzde yukarıdaki ikinci dereceden denklem var, bu yüzden onu Vieta formüllerini kullanarak çözüyoruz:

(x − 8)(x − 2) = 0

x1 = 8; x 2 = 2

Bu kadar. Sizce denklem çözüldü mü? HAYIR! Böyle bir çözüm için 0 puan alacağız çünkü orijinal denklem x değişkeniyle birlikte iki logaritma içeriyor. Bu nedenle tanım alanının dikkate alınması gerekmektedir.

Ve eğlencenin başladığı yer burasıdır. Çoğu öğrencinin kafası karışıyor: Logaritmanın tanım alanı nedir? Elbette tüm argümanların (iki tane var) sıfırdan büyük olması gerekir:

(x - 4)/(3x - 4) > 0

(x - 5)/(2x - 1) > 0

Bu eşitsizliklerin her biri çözülmeli, düz bir çizgi üzerinde işaretlenmeli, kesiştirilmeli ve ancak bundan sonra kesişme noktasında hangi köklerin bulunduğu görülmelidir.

Dürüst olacağım: Bu tekniğin var olma hakkı var, güvenilir ve doğru cevabı alacaksınız, ancak içinde çok fazla gereksiz adım var. Öyleyse çözümümüzü tekrar gözden geçirelim ve görelim: Kapsamı tam olarak nereye uygulamamız gerekiyor? Başka bir deyişle, ekstra köklerin tam olarak ne zaman ortaya çıktığını açıkça anlamanız gerekir.

  1. Başlangıçta iki logaritmamız vardı. Daha sonra bir tanesini sağa kaydırdık ama bu durum tanım alanını etkilemedi.
  2. Sonra tabandaki kuvveti kaldırıyoruz ama hala iki logaritma var ve her birinde bir x değişkeni var.
  3. Son olarak kütük işaretlerinin üzerini çiziyoruz ve klasik olanı elde ediyoruz kesirli rasyonel denklem.

Tanımın kapsamı son adımda genişletilir! Log işaretlerinden kurtulup kesirli-rasyonel bir denkleme geçtiğimizde, x değişkenine yönelik gereksinimler çarpıcı biçimde değişti!

Sonuç olarak, tanım alanı çözümün en başında değil, yalnızca belirtilen adımda, argümanların doğrudan eşitlenmesinden önce düşünülebilir.

Optimizasyon fırsatının yattığı yer burasıdır. Bir yandan her iki argümanın da sıfırdan büyük olması gerekiyor. Öte yandan, bu argümanları daha da eşitliyoruz. Dolayısıyla bunlardan en az biri pozitifse ikincisi de pozitif olacaktır!

Dolayısıyla iki eşitsizliğin aynı anda karşılanmasının gereğinden fazla olduğu ortaya çıktı. Bu kesirlerden sadece birini dikkate almak yeterlidir. Hangisi? Daha basit olan. Örneğin sağdaki kesire bakalım:

(x - 5)/(2x - 1) > 0

Bu tipik bir kesirli rasyonel eşitsizliktir; bunu aralık yöntemini kullanarak çözüyoruz:

İşaretler nasıl yerleştirilir? Tüm köklerimizden açıkça daha büyük olan bir sayıyı alalım. Mesela 1 milyar ve kesirini yerine koyuyoruz. Aldık pozitif sayı yani x = 5 kökünün sağında bir artı işareti olacaktır.

Sonra işaretler değişir, çünkü hiçbir yerde çokluğun kökleri yoktur. Fonksiyonun pozitif olduğu aralıklarla ilgileniyoruz. Bu nedenle, x ∈ (−∞; −1/2)∪(5; +∞).

Şimdi cevapları hatırlayalım: x = 8 ve x = 2. Açıkçası bunlar henüz cevap değil, yalnızca cevaba adaylar. Hangisi belirtilen kümeye aittir? Elbette x = 8. Ama x = 2 tanım alanı açısından bize uymuyor.

Toplamda ilk logaritmik denklemin cevabı x = 8 olacaktır. Artık doğru olanı bulduk, bilinçli bir karar Tanım alanı dikkate alınarak.

Gelelim ikinci denkleme:

log 5 (x − 9) = log 0,5 4 − log 5 (x − 5) + 3

Denklemde ondalık kesir varsa ondan kurtulmanız gerektiğini hatırlatayım. Başka bir deyişle 0,5'i ortak kesir olarak yeniden yazalım. Bu tabanı içeren logaritmanın kolaylıkla hesaplanabildiğini hemen fark ederiz:

Bu çok önemli bir an! Hem tabanda hem de argümanda derecelerimiz olduğunda, bu derecelerin göstergelerini aşağıdaki formülü kullanarak türetebiliriz:

Orijinal logaritmik denklemimize geri dönelim ve onu yeniden yazalım:

log 5 (x - 9) = 1 - log 5 (x - 5)

Kanonik forma oldukça yakın bir tasarım elde ettik. Ancak terimler ve eşittir işaretinin sağındaki eksi işareti kafamızı karıştırıyor. Birini 5 tabanına göre logaritma olarak temsil edelim:

log 5 (x − 9) = log 5 5 1 – log 5 (x − 5)

Sağdaki logaritmaları çıkarın (bu durumda argümanları bölünmüştür):

log 5 (x − 9) = log 5 5/(x − 5)

Müthiş. Böylece kanonik formu elde ettik! Günlük işaretlerinin üzerini çiziyoruz ve argümanları eşitliyoruz:

(x − 9)/1 = 5/(x − 5)

Bu, çapraz olarak çarpılarak kolayca çözülebilecek bir orandır:

(x − 9)(x − 5) = 5 1

x 2 − 9x − 5x + 45 = 5

x 2 − 14x + 40 = 0

Açıkçası, ikinci dereceden indirgenmiş bir denklemimiz var. Vieta'nın formülleri kullanılarak kolayca çözülebilir:

(x − 10)(x − 4) = 0

x 1 = 10

x 2 = 4

İki kökümüz var. Ancak bunlar nihai yanıtlar değil, yalnızca adaylardır çünkü logaritmik denklem aynı zamanda tanım alanının kontrol edilmesini de gerektirir.

Size hatırlatıyorum: ne zaman aramaya gerek yok Her argümanların sayısı sıfırdan büyük olacaktır. Bir bağımsız değişkenin (x - 9 veya 5/(x - 5)) sıfırdan büyük olmasını gerektirmek yeterlidir. İlk argümanı düşünün:

x - 9 > 0

x > 9

Açıkçası, yalnızca x = 10 bu gereksinimi karşılar, bu son cevaptır. Bütün sorun çözüldü.

Bir kez daha bugünkü dersin ana düşünceleri:

  1. X değişkeni birkaç logaritmada göründüğünde, denklem temel olmaktan çıkar ve bunun için tanım alanının hesaplanması gerekecektir. Aksi takdirde cevaba kolayca fazladan kökler yazabilirsiniz.
  2. Eşitsizliği hemen değil, tam olarak log işaretlerinden kurtulduğumuz anda yazarsak, alanın kendisiyle çalışmak önemli ölçüde basitleştirilebilir. Sonuçta argümanlar birbirine eşitlendiğinde yalnızca birinin sıfırdan büyük olmasını istemek yeterlidir.

Elbette, bir eşitsizliği oluşturmak için hangi argümanı kullanacağımızı kendimiz seçiyoruz, bu nedenle en basit olanı seçmek mantıklıdır. Örneğin, ikinci denklemde, kesirli rasyonel ikinci argümanın aksine, doğrusal bir fonksiyon olan (x − 9) argümanını seçtik. Katılıyorum, x − 9 > 0 eşitsizliğini çözmek, 5/(x − 5) > 0 eşitsizliğini çözmekten çok daha kolaydır. Ancak sonuç aynı.

Bu açıklama ODZ aramasını büyük ölçüde basitleştirir, ancak dikkatli olun: yalnızca argümanlar tam olarak aynıysa iki yerine bir eşitsizlik kullanabilirsiniz. birbirine eşittir!

Elbette birileri şimdi şunu soracaktır: Farklı olan ne? Evet bazen. Örneğin, adımın kendisinde, bir değişken içeren iki argümanı çarptığımızda, gereksiz köklerin ortaya çıkma tehlikesi vardır.

Kendiniz karar verin: Öncelikle argümanların her birinin sıfırdan büyük olması gerekir, ancak çarpma işleminden sonra çarpımlarının sıfırdan büyük olması yeterlidir. Sonuç olarak bu kesirlerin her birinin negatif olması durumu gözden kaçırılmaktadır.

Bu nedenle, karmaşık logaritmik denklemleri yeni anlamaya başlıyorsanız, hiçbir durumda x değişkenini içeren logaritmaları çarpmayın - bu genellikle gereksiz köklerin ortaya çıkmasına yol açacaktır. Fazladan bir adım atmak, bir terimi diğer tarafa taşımak ve kanonik bir form oluşturmak daha iyidir.

Peki bu tür logaritmaları çarpmadan yapamıyorsanız ne yapmanız gerektiğini bir sonraki video dersimizde tartışacağız. :)

Bir kez daha denklemdeki kuvvetler hakkında

Bugün logaritmik denklemlerle ilgili, daha doğrusu logaritmanın argümanlarından ve tabanlarından kuvvetlerin çıkarılmasıyla ilgili oldukça kaygan bir konuyu inceleyeceğiz.

Hatta çift kuvvetlerin kaldırılmasından bahsedeceğimizi bile söyleyebilirim, çünkü gerçek logaritmik denklemleri çözerken zorlukların çoğu çift kuvvetlerle ortaya çıkar.

Kanonik formla başlayalım. Diyelim ki log a f(x) = b şeklinde bir denklemimiz var. Bu durumda b sayısını b = log a a b formülünü kullanarak yeniden yazarız. Aşağıdakiler ortaya çıkıyor:

log a f (x) = log a a b

Daha sonra argümanları eşitliyoruz:

f(x) = a b

Sondan bir önceki formüle kanonik form denir. İlk bakışta ne kadar karmaşık ve korkutucu görünse de, herhangi bir logaritmik denklemi bu amaçla azaltmaya çalışırlar.

Öyleyse deneyelim. İlk görevle başlayalım:

Ön not: dediğim gibi her şey ondalık sayılar logaritmik bir denklemde onu sıradan denklemlere dönüştürmek daha iyidir:

0,5 = 5/10 = 1/2

Bu gerçeği dikkate alarak denklemimizi yeniden yazalım. Hem 1/1000'in hem de 100'ün on'un kuvvetleri olduğuna dikkat edin ve sonra nerede olurlarsa olsunlar kuvvetleri çıkaralım: argümanlardan ve hatta logaritma tabanından:

Ve burada birçok öğrencinin aklına şu soru geliyor: "Sağdaki modül nereden geldi?" Aslında neden sadece (x − 1) yazmıyorsunuz? Elbette şimdi (x − 1) yazacağız, ancak tanım alanını hesaba katmak bize böyle bir gösterim hakkı veriyor. Sonuçta başka bir logaritma zaten (x - 1) içeriyor ve bu ifadenin sıfırdan büyük olması gerekiyor.

Fakat logaritmanın tabanından kareyi çıkardığımızda modülü tam olarak tabanda bırakmamız gerekir. Nedenini açıklayayım.

Gerçek şu ki, matematiksel açıdan bakıldığında derece almak, kök almakla eşdeğerdir. Özellikle (x − 1) 2 ifadesinin karesini aldığımızda aslında ikinci kökü almış oluyoruz. Ancak karekök bir modülden başka bir şey değildir. Kesinlikle modülçünkü x − 1 ifadesi negatif olsa bile karesi alındığında "eksi" yine de sönecektir. Kökün daha fazla çıkarılması bize herhangi bir eksi olmadan pozitif bir sayı verecektir.

Genel olarak, saldırgan hatalar yapmaktan kaçınmak için şunu bir kez ve tamamen hatırlayın:

Aynı kuvvete yükseltilmiş herhangi bir fonksiyonun eşit kuvvetinin kökü, fonksiyonun kendisine değil modülüne eşittir:

Logaritmik denklemimize dönelim. Modülden bahsederken acısız bir şekilde çıkarabileceğimizi savundum. Bu doğru. Şimdi nedenini açıklayacağım. Açıkçası iki seçeneği göz önünde bulundurmak zorunda kaldık:

  1. x − 1 > 0 ⇒ |x − 1| = x - 1
  2. x - 1< 0 ⇒ |х − 1| = −х + 1

Bu seçeneklerin her birinin ele alınması gerekecektir. Ancak bir sorun var: orijinal formül zaten herhangi bir modül olmadan (x − 1) fonksiyonunu içeriyor. Logaritmanın tanım alanına göre, hemen x − 1 > 0 yazma hakkına sahibiz.

Çözüm sürecinde gerçekleştirdiğimiz modüller ve diğer dönüşümlerden bağımsız olarak bu gereksinimin karşılanması gerekmektedir. Bu nedenle ikinci seçeneği düşünmenin bir anlamı yok - asla ortaya çıkmayacak. Eşitsizliğin bu dalını çözerken bazı sayılar elde etsek bile, bunlar yine de nihai cevaba dahil edilmeyecektir.

Artık logaritmik denklemin kanonik formundan kelimenin tam anlamıyla bir adım uzaktayız. Birimi şu şekilde temsil edelim:

1 = log x - 1 (x - 1) 1

Ek olarak sağdaki −4 faktörünü de argümana dahil ediyoruz:

log x − 1 10 −4 = log x − 1 (x − 1)

Önümüzde logaritmik denklemin kanonik formu var. Logaritma işaretinden kurtuluyoruz:

10 −4 = x − 1

Ancak taban bir fonksiyon olduğundan (asal sayı değil), ayrıca bu fonksiyonun sıfırdan büyük olmasını ve bire eşit olmamasını da isteriz. Sonuçta ortaya çıkacak sistem şu şekilde olacaktır:

x − 1 > 0 şartı otomatik olarak karşılandığı için (sonuçta x − 1 = 10 −4), eşitsizliklerden biri sistemimizden silinebilir. İkinci koşulun da üzeri çizilebilir çünkü x − 1 = 0,0001< 1. Итого получаем:

x = 1 + 0,0001 = 1,0001

Bu, logaritmanın tanım alanının tüm gereksinimlerini otomatik olarak karşılayan tek köktür (ancak, sorunumuzun koşullarında açıkça yerine getirildiği için tüm gereksinimler elenmiştir).

Yani ikinci denklem:

3 günlük 3 x x = 2 günlük 9 x x 2

Bu denklem öncekinden temel olarak nasıl farklı? Keşke logaritmanın tabanları - 3x ve 9x - olmadığı gerçeğiyle doğal dereceler birbirine göre. Bu nedenle önceki çözümde kullandığımız geçiş mümkün değildir.

En azından derecelerden kurtulalım. Bizim durumumuzda tek derece ikinci argümandadır:

3 log 3 x x = 2 ∙ 2 log 9 x |x |

Ancak x değişkeni de tabanda olduğundan modül işareti kaldırılabilir. x > 0 ⇒ |x| = x. Logaritmik denklemimizi yeniden yazalım:

3 günlük 3 x x = 4 günlük 9 x x

Argümanların aynı olduğu logaritmalar elde ettik, ancak farklı sebepler. Sonra ne yapacağız? Burada pek çok seçenek var, ancak bunlardan yalnızca ikisini ele alacağız; bunlar en mantıklı ve en önemlisi bunlar çoğu öğrenci için hızlı ve anlaşılır tekniklerdir.

İlk seçeneği zaten düşündük: belirsiz bir durumda, değişken tabanlı logaritmaları sabit bir tabana dönüştürün. Örneğin, bir ikiliye. Geçiş formülü basittir:

Elbette c değişkeninin rolü normal bir sayı olmalıdır: 1 ≠ c > 0. Bizim durumumuzda c = 2 olsun. Şimdi önümüzde sıradan bir kesirli rasyonel denklem var. Soldaki tüm unsurları topluyoruz:

Açıkçası, hem birinci hem de ikinci kesirlerde mevcut olduğundan log 2 x faktörünü kaldırmak daha iyidir.

log 2 x = 0;

3 günlük 2 9x = 4 günlük 2 3x

Her günlüğü iki terime ayırıyoruz:

log 2 9x = log 2 9 + log 2 x = 2 log 2 3 + log 2 x;

günlük 2 3x = günlük 2 3 + günlük 2 x

Bu gerçekleri dikkate alarak eşitliğin her iki tarafını da yeniden yazalım:

3 (2 log 2 3 + log 2 x ) = 4 (log 2 3 + log 2 x)

6 günlük 2 3 + 3 günlük 2 x = 4 günlük 2 3 + 4 günlük 2 x

2 günlük 2 3 = günlük 2 x

Şimdi geriye kalan tek şey logaritmanın işaretinin altına ikiyi girmek (kuvvet haline dönüşecek: 3 2 = 9):

günlük 2 9 = günlük 2 x

Önümüzde klasik kanonik form var, logaritma işaretinden kurtulup şunu elde ediyoruz:

Beklendiği gibi bu kökün sıfırdan büyük olduğu ortaya çıktı. Geriye tanım alanını kontrol etmek kalıyor. Sebeplerine bakalım:

Ancak kök x = 9 bu gereksinimleri karşılar. Bu nedenle nihai karardır.

Bu çözümden çıkan sonuç basittir: Uzun hesaplamalardan korkmayın! Sadece başlangıçta rastgele yeni bir üs seçtik ve bu, süreci önemli ölçüde karmaşıklaştırdı.

Ama sonra şu soru ortaya çıkıyor: Hangi temel? en uygun? İkinci yöntemde bundan bahsedeceğim.

Orijinal denklemimize geri dönelim:

3 günlük 3x x = 2 günlük 9x x 2

3 log 3x x = 2 ∙ 2 log 9x |x |

x > 0 ⇒ |x| =x

3 günlük 3 x x = 4 günlük 9 x x

Şimdi biraz düşünelim: Hangi sayı veya fonksiyon optimal temel olabilir? Açıkça görülüyor ki en iyi seçenek c = x olacak - zaten argümanlarda olan şey. Bu durumda log a b = log c b /log c a formülü şu şekli alacaktır:

Başka bir deyişle ifade basitçe tersine çevrilir. Bu durumda argüman ve temel yer değiştirir.

Bu formül çok faydalıdır ve karmaşık logaritmik denklemlerin çözümünde sıklıkla kullanılır. Ancak bu formülü kullanırken çok ciddi bir tuzak var. Taban yerine x değişkenini değiştirirsek, daha önce gözlemlenmeyen kısıtlamalar uygulanır:

Orijinal denklemde böyle bir sınırlama yoktu. Bu nedenle x = 1 durumunu ayrıca kontrol etmeliyiz. Bu değeri denklemimizde yerine koyalım:

3 günlük 3 1 = 4 günlük 9 1

Doğru sayısal eşitliği elde ederiz. Bu nedenle x = 1 bir köktür. Önceki yöntemde tam olarak aynı kökü çözümün en başında bulduk.

Ancak şimdi bu özel durumu ayrı ayrı ele aldığımıza göre, x ≠ 1 olduğunu rahatlıkla varsayabiliriz. O zaman logaritmik denklemimiz aşağıdaki biçimde yeniden yazılacaktır:

3 günlük x 9x = 4 günlük x 3x

Öncekiyle aynı formülü kullanarak her iki logaritmayı genişletiyoruz. Log x x = 1 olduğuna dikkat edin:

3 (log x 9 + log x x) = 4 (log x 3 + log x x)

3 günlük x 9 + 3 = 4 günlük x 3 + 4

3 günlük x 3 2 − 4 günlük x 3 = 4 − 3

2 günlük x 3 = 1

Böylece kanonik forma geldik:

günlük x 9 = günlük x x 1

x=9

İkinci kökü elde ettik. x ≠ 1 koşulunu karşılar. Bu nedenle, x = 1 ile birlikte x = 9 son cevaptır.

Gördüğünüz gibi hesaplamaların hacmi biraz azaldı. Ancak gerçek bir logaritmik denklemi çözerken adım sayısı çok daha az olacaktır çünkü her adımı bu kadar ayrıntılı açıklamanıza gerek yoktur.

Bugünkü dersin temel kuralı şudur: Eğer problem, aynı derecenin kökünün çıkarıldığı çift dereceli bir derece içeriyorsa, o zaman çıktı bir modül olacaktır. Ancak logaritmanın tanım alanına dikkat edilirse bu modül kaldırılabilir.

Ancak dikkatli olun: Bu dersten sonra çoğu öğrenci her şeyi anladığını düşünür. Ancak gerçek problemleri çözerken mantıksal zincirin tamamını yeniden üretemezler. Sonuç olarak denklem gereksiz kökler edinir ve cevabın yanlış olduğu ortaya çıkar.

Logaritmik denklemlerin çözümüyle ilgili uzun ders serisinin son videoları. Bu sefer öncelikle logaritmanın ODZ'si ile çalışacağız - bu tür problemleri çözerken çoğu hatanın ortaya çıkmasının nedeni tam olarak tanım alanının yanlış değerlendirilmesinden (veya hatta göz ardı edilmesinden) kaynaklanmaktadır.

Bu kısa video dersinde logaritmalarda toplama ve çıkarma formüllerinin kullanımına bakacağız ve ayrıca birçok öğrencinin sorun yaşadığı kesirli rasyonel denklemleri de ele alacağız.

Ne hakkında konuşacağız? Ana formül Başa çıkmak istediğim şey şuna benziyor:

log a (f g ) = log a f + log a g

Bu, çarpımdan logaritma toplamına ve geriye doğru standart bir geçiştir. Muhtemelen bu formülü logaritma çalışmaya başladığınızdan beri biliyorsunuzdur. Ancak bir aksaklık var.

a, f ve g değişkenleri sıradan sayılar olduğu sürece herhangi bir sorun ortaya çıkmaz. Bu formül harika çalışıyor.

Ancak f ve g yerine fonksiyonlar ortaya çıktığı anda, hangi yönde dönüşüm yapılacağına bağlı olarak tanım alanının genişletilmesi veya daraltılması sorunu ortaya çıkar. Kendiniz karar verin: Solda yazılı logaritmada tanım alanı aşağıdaki gibidir:

fg > 0

Ancak sağda yazılan miktarda, tanım alanı zaten biraz farklıdır:

f > 0

g > 0

Bu gereksinimler dizisi orijinal gereksinimlerden daha katıdır. İlk durumda f seçeneğinden memnun olacağız.< 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg >0 yürütülür).

Yani sol yapıdan sağa doğru gidildiğinde tanım alanının daralması söz konusudur. İlk başta bir toplamımız olsaydı ve onu bir çarpım biçiminde yeniden yazarsak, o zaman tanım alanı genişler.

Başka bir deyişle, ilk durumda köklerimizi kaybedebilir, ikincisinde ise fazladan kök alabiliriz. Gerçek logaritmik denklemleri çözerken bu dikkate alınmalıdır.

Yani, ilk görev:

[Resmin başlığı]

Solda aynı tabanı kullanan logaritmaların toplamını görüyoruz. Bu nedenle bu logaritmalar toplanabilir:

[Resmin başlığı]

Gördüğünüz gibi sağdaki formülü kullanarak sıfırı değiştirdik:

a = log b b a

Denklemimizi biraz daha düzenleyelim:

günlük 4 (x - 5) 2 = günlük 4 1

Önümüzde logaritmik denklemin kanonik formu var; log işaretinin üstünü çizebilir ve argümanları eşitleyebiliriz:

(x - 5) 2 = 1

|x − 5| = 1

Lütfen dikkat: Modül nereden geldi? Tam karenin kökünün modüle eşit olduğunu hatırlatmama izin verin:

[Resmin başlığı]

Daha sonra modüllü klasik denklemi çözeriz:

|f | = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x 1 = 5 − 1 = 4; x2 = 5 + 1 = 6

İşte iki aday cevabı. Bunlar orijinal logaritmik denklemin çözümü mü? Mümkün değil!

Her şeyi böyle bırakıp cevabı yazmaya hakkımız yok. Logaritmaların toplamını argümanların çarpımının bir logaritması ile değiştirdiğimiz adıma bir göz atın. Sorun şu ki, orijinal ifadelerde fonksiyonlarımız var. Bu nedenle aşağıdakilere ihtiyacınız olmalıdır:

x(x − 5) > 0; (x − 5)/x > 0.

Ürünü dönüştürüp tam bir kare elde ettiğimizde gereksinimler değişti:

(x - 5) 2 > 0

Bu gereksinim ne zaman karşılanır? Evet, neredeyse her zaman! x − 5 = 0 durumu hariç. Yani eşitsizlik tek bir delinmiş noktaya indirgenecek:

x - 5 ≠ 0 ⇒ x ≠ 5

Gördüğünüz gibi tanımın kapsamı genişledi, dersin başında da bundan bahsetmiştik. Sonuç olarak, ekstra kökler görünebilir.

Bu ekstra köklerin ortaya çıkmasını nasıl önleyebilirsiniz? Çok basit: Elde ettiğimiz köklere bakıyoruz ve bunları orijinal denklemin tanım alanıyla karşılaştırıyoruz. Hadi sayalım:

x (x - 5) > 0

Aralık yöntemini kullanarak çözeceğiz:

x (x - 5) = 0 ⇒ x = 0; x = 5

Ortaya çıkan sayıları satırda işaretliyoruz. Eşitsizlik katı olduğundan tüm noktalar eksik. 5'ten büyük herhangi bir sayıyı alın ve yerine şunu koyun:

[Resmin başlığı]

(−∞; 0) ∪ (5; ∞) aralıklarıyla ilgileniyoruz. Köklerimizi segment üzerinde işaretlersek x = 4'ün bize uymadığını görürüz çünkü bu kök orijinal logaritmik denklemin tanım bölgesinin dışında kalır.

Bütünlüğe dönüyoruz, x = 4 kökünün üzerini çiziyoruz ve cevabı yazıyoruz: x = 6. Bu, orijinal logaritmik denklemin son cevabıdır. İşte bu, sorun çözüldü.

İkinci logaritmik denkleme geçelim:

[Resmin başlığı]

Hadi çözelim. İlk terimin bir kesir olduğunu ve ikincisinin aynı kesir olduğunu ancak ters çevrildiğini unutmayın. lgx ifadesinden korkmayın - çok basit ondalık logaritma, yazabiliriz:

lgx = günlük 10 x

Tersine çevrilmiş iki kesirimiz olduğundan, yeni bir değişken eklemeyi öneriyorum:

[Resmin başlığı]

Bu nedenle denklemimiz şu şekilde yeniden yazılabilir:

t + 1/t = 2;

t + 1/t - 2 = 0;

(t 2 − 2t + 1)/t = 0;

(t - 1) 2 /t = 0.

Gördüğünüz gibi kesrin payı tam karedir. Bir kesirin payı sıfır ve paydası sıfırdan farklı olduğunda sıfıra eşittir:

(t - 1) 2 = 0; t ≠ 0

İlk denklemi çözelim:

t - 1 = 0;

t = 1.

Bu değer ikinci şartı karşılamaktadır. Dolayısıyla denklemimizi tamamen çözdüğümüzü söyleyebiliriz, ancak yalnızca t değişkenine göre. Şimdi t’nin ne olduğunu hatırlayalım:

[Resmin başlığı]

Oranı bulduk:

logx = 2 logx + 1

2 logx − logx = −1

logx = −1

Bu denklemi kanonik formuna getiriyoruz:

logx = log 10 −1

x = 10 −1 = 0,1

Sonuç olarak, teoride orijinal denklemin çözümü olan tek bir kök elde ettik. Ancak yine de işi riske atalım ve orijinal denklemin tanım tanım kümesini yazalım:

[Resmin başlığı]

Bu nedenle kökümüz tüm gereksinimleri karşılıyor. Orijinal logaritmik denklemin çözümünü bulduk. Cevap: x = 0,1. Problem çözüldü.

Bugünkü dersimizde tek bir kilit nokta var: Bir çarpımdan toplama ve geriye doğru geçiş formülünü kullanırken, geçişin hangi yöne yapıldığına bağlı olarak tanımın kapsamının daraltılabileceğini veya genişleyebileceğini mutlaka dikkate alın.

Ne olduğunu nasıl anlayabilirim: daralma mı yoksa genişleme mi? Çok basit. Daha önce işlevler bir aradaysa ve şimdi ayrıysa, tanımın kapsamı daralmıştır (çünkü daha fazla gereksinim vardır). Başlangıçta işlevler ayrı ayrı duruyorsa ve şimdi bir aradaysa, o zaman tanım alanı genişletilir (ürüne bireysel faktörlere göre daha az gereksinim dayatılır).

Bu açıklamayı dikkate alarak, ikinci logaritmik denklemin bu dönüşümleri hiç gerektirmediğini, yani argümanları hiçbir yere eklemediğimizi veya çarpmadığımızı belirtmek isterim. Ancak burada, çözümü önemli ölçüde basitleştirebilecek başka bir harika tekniğe dikkatinizi çekmek istiyorum. Bir değişkenin değiştirilmesiyle ilgilidir.

Ancak hiçbir ikamenin bizi tanımın kapsamından kurtarmadığını unutmayın. Bu nedenle tüm kökler bulunduktan sonra tembel olmadık ve ODZ'sini bulmak için orijinal denkleme geri döndük.

Çoğu zaman bir değişkeni değiştirirken öğrenciler t değerini bulup çözümün tamamlandığını düşündüklerinde can sıkıcı bir hata ortaya çıkar. Mümkün değil!

T'nin değerini bulduktan sonra orijinal denkleme dönüp bu harfle tam olarak ne demek istediğimizi görmeniz gerekir. Sonuç olarak, orijinalinden çok daha basit olacak bir denklemi daha çözmemiz gerekiyor.

Yeni bir değişkenin tanıtılmasının amacı tam olarak budur. Orijinal denklemi, her birinin çok daha basit bir çözümü olan iki ara denkleme ayırdık.

"İç içe geçmiş" logaritmik denklemler nasıl çözülür?

Bugün logaritmik denklemleri incelemeye devam edeceğiz ve bir logaritmanın başka bir logaritmanın işareti altında olduğu durumları analiz edeceğiz. Her iki denklemi de kanonik formu kullanarak çözeceğiz.

Bugün logaritmik denklemleri incelemeye devam ediyoruz ve bir logaritmanın diğerinin işareti altında olduğu durumları analiz edeceğiz. Her iki denklemi de kanonik formu kullanarak çözeceğiz. Log a f (x) = b formundaki en basit logaritmik denklemimiz varsa, böyle bir denklemi çözmek için aşağıdaki adımları uyguladığımızı hatırlatmama izin verin. Öncelikle b sayısını değiştirmemiz gerekiyor:

b = log a a b

Not: a b bir argümandır. Benzer şekilde orijinal denklemde argüman f(x) fonksiyonudur. Sonra denklemi yeniden yazar ve şu yapıyı elde ederiz:

log a f (x) = log a a b

Daha sonra üçüncü adımı gerçekleştirebiliriz - logaritma işaretinden kurtulun ve basitçe şunu yazın:

f(x) = a b

Sonuç olarak yeni bir denklem elde ederiz. Bu durumda f(x) fonksiyonuna herhangi bir kısıtlama getirilmemektedir. Örneğin logaritmik bir fonksiyon da onun yerini alabilir. Ve sonra yine logaritmik bir denklem elde edeceğiz ve bunu yine en basit haline indirip kanonik form aracılığıyla çözeceğiz.

Ancak şarkı sözleri yeterli. Asıl sorunu çözelim. Yani, görev numarası 1:

günlük 2 (1 + 3 günlük 2 x ) = 2

Gördüğünüz gibi basit bir logaritmik denklemimiz var. F (x)'in rolü 1 + 3 log 2 x yapısıdır ve b sayısının rolü 2 sayısıdır (a'nın rolü de iki tarafından oynanır). Bu ikisini şu şekilde yeniden yazalım:

İlk iki ikinin bize logaritmanın tabanından geldiğini anlamak önemlidir, yani orijinal denklemde 5 olsaydı, o zaman 2 = log 5 5 2 elde ederdik. Genel olarak taban yalnızca problemde başlangıçta verilen logaritmaya bağlıdır. Ve bizim durumumuzda bu 2 sayısıdır.

Sağdaki ikisinin de aslında bir logaritma olduğunu dikkate alarak logaritmik denklemimizi yeniden yazıyoruz. Şunu elde ederiz:

günlük 2 (1 + 3 günlük 2 x ) = günlük 2 4

Konusuna geçelim son adım planımız - kanonik formdan kurtuluyoruz. Basitçe kütük işaretlerinin üzerini çizdiğimizi söyleyebilirsiniz. Bununla birlikte, matematiksel açıdan bakıldığında, "günlüğün üzerini çizmek" imkansızdır - argümanları basitçe eşitlediğimizi söylemek daha doğru olacaktır:

1 + 3 log 2 x = 4

Buradan 3 log 2 x'i kolaylıkla bulabiliriz:

3 log 2 x = 3

günlük 2 x = 1

Yine en basit logaritmik denklemi elde ettik, tekrar kanonik forma getirelim. Bunu yapmak için aşağıdaki değişiklikleri yapmamız gerekiyor:

1 = günlük 2 2 1 = günlük 2 2

Üssünde neden iki tane var? Çünkü soldaki kanonik denklemimizde tam olarak 2 tabanına göre bir logaritma var. Bu gerçeği dikkate alarak problemi yeniden yazıyoruz:

günlük 2 x = günlük 2 2

Yine logaritma işaretinden kurtuluyoruz, yani basitçe argümanları eşitliyoruz. Tabanlar aynı olduğundan ve sağda veya solda başka hiçbir ek eylem gerçekleştirilmediğinden bunu yapma hakkımız var:

Bu kadar! Problem çözüldü. Logaritmik denklemin çözümünü bulduk.

Not! Her ne kadar argümanda x değişkeni görünse de (yani tanım alanı için gereklilikler mevcutsa), herhangi bir ek gereklilik yapmayacağız.

Yukarıda söylediğim gibi, değişken yalnızca bir logaritmanın yalnızca bir argümanında görünüyorsa bu kontrol gereksizdir. Bizim durumumuzda x gerçekten yalnızca argümanda ve yalnızca bir log işareti altında görünüyor. Bu nedenle ek kontrollere gerek yoktur.

Ancak güvenmiyorsanız Bu method, o zaman x = 2'nin gerçekten bir kök olduğunu kolayca doğrulayabilirsiniz. Bu sayıyı orijinal denklemde değiştirmek yeterlidir.

Şimdi ikinci denkleme geçelim, biraz daha ilginç:

log 2 (log 1/2 (2x - 1) + log 2 4) = 1

Büyük logaritmanın içindeki ifadeyi f(x) fonksiyonuyla gösterirsek, bugünkü video dersimize başladığımız en basit logaritmik denklemi elde ederiz. Bu nedenle, birimi log 2 2 1 = log 2 2 biçiminde temsil etmemiz gereken kanonik formu uygulayabiliriz.

Büyük denklemimizi yeniden yazalım:

log 2 (log 1/2 (2x − 1) + log 2 4) = log 2 2

Argümanları eşitleyerek logaritmanın işaretinden uzaklaşalım. Bunu yapmaya hakkımız var çünkü hem solda hem de sağda tabanlar aynı. Ayrıca log 2 4 = 2'ye dikkat edin:

log 1/2 (2x - 1) + 2 = 2

log 1/2 (2x - 1) = 0

Önümüzde yine log a f (x) = b formunun en basit logaritmik denklemi var. Kanonik forma geçelim yani sıfırı log 1/2 (1/2)0 = log 1/2 1 formunda temsil ediyoruz.

Denklemimizi yeniden yazıyoruz ve argümanları eşitleyerek log işaretinden kurtuluyoruz:

log 1/2 (2x − 1) = log 1/2 1

2x - 1 = 1

Yine hemen yanıt aldık. Orijinal denklemde yalnızca bir logaritma fonksiyonu bağımsız değişken olarak içerdiğinden ek kontrollere gerek yoktur.

Bu nedenle ek kontrollere gerek yoktur. Bu denklemin tek kökünün x = 1 olduğunu rahatlıkla söyleyebiliriz.

Ancak ikinci logaritmada dört yerine x'in bir fonksiyonu varsa (veya 2x argümanda değil tabandaysa), o zaman tanım alanını kontrol etmek gerekli olacaktır. Aksi takdirde fazladan köklerle karşılaşma ihtimaliniz yüksektir.

Bu ekstra kökler nereden geliyor? Bu noktanın çok iyi anlaşılması gerekiyor. Orijinal denklemlere bir göz atın: x fonksiyonu her yerde logaritma işaretinin altındadır. Sonuç olarak, log 2 x'i yazdığımız için, gereksinimi otomatik olarak x > 0 olarak belirledik. Aksi takdirde, bu girişin hiçbir anlamı yoktur.

Ancak logaritmik denklemi çözdükçe tüm log işaretlerinden kurtulur ve basit yapılar elde ederiz. Doğrusal fonksiyon x'in herhangi bir değeri için tanımlandığından burada herhangi bir kısıtlama yoktur.

Son fonksiyonun her yerde ve her zaman tanımlandığı, ancak orijinal fonksiyonun her yerde ve her zaman tanımlanmadığı bu problem, logaritmik denklemlerin çözümünde sıklıkla ekstra köklerin ortaya çıkmasının nedenidir.

Ancak bir kez daha tekrar ediyorum: Bu yalnızca fonksiyonun birden fazla logaritmada veya bunlardan birinin tabanında olması durumunda gerçekleşir. Bugün ele aldığımız problemlerde prensip olarak tanım alanının genişletilmesinde herhangi bir sorun yoktur.

Farklı gerekçelerle davalar

Bu ders daha fazlasına adanmıştır karmaşık yapılar. Günümüz denklemlerindeki logaritmalar artık hemen çözülmeyecek; önce bazı dönüşümlerin yapılması gerekecek.

Birbirinin tam kuvvetleri olmayan tamamen farklı tabanlara sahip logaritmik denklemleri çözmeye başlıyoruz. Bu tür sorunların sizi korkutmasına izin vermeyin; çözülmesi en zor olanlardan daha zor değil basit tasarımlar yukarıda tartıştığımız şey.

Ancak doğrudan sorunlara geçmeden önce, size en basit logaritmik denklemleri kanonik formu kullanarak çözme formülünü hatırlatmama izin verin. Bunun gibi bir sorunu düşünün:

loga f(x) = b

f(x) fonksiyonunun sadece bir fonksiyon olması ve a ve b sayılarının rolünün (herhangi bir x değişkeni olmadan) sayılar olması önemlidir. Elbette, kelimenin tam anlamıyla bir dakika içinde a ve b değişkenleri yerine fonksiyonların olduğu bu tür durumlara bakacağız, ancak bu şimdi bununla ilgili değil.

Hatırladığımız gibi, b sayısının, soldaki aynı a tabanına göre bir logaritma ile değiştirilmesi gerekir. Bu çok basit bir şekilde yapılır:

b = log a a b

Elbette “herhangi bir sayı b” ve “herhangi bir sayı a” kelimeleri tanım kapsamını karşılayan değerler anlamına gelir. Özellikle bu denklemde Hakkında konuşuyoruz yalnızca a > 0 ve a ≠ 1 tabanı.

Bununla birlikte, bu gereklilik otomatik olarak yerine getirilir, çünkü orijinal problem zaten a tabanına göre bir logaritma içerir - bu kesinlikle 0'dan büyük olacaktır ve 1'e eşit olmayacaktır. Bu nedenle logaritmik denklemi çözmeye devam ediyoruz:

log a f (x) = log a a b

Böyle bir gösterime kanonik form denir. Kolaylığı, argümanları eşitleyerek log işaretinden hemen kurtulabilmemizde yatmaktadır:

f(x) = a b

Şimdi değişken tabanlı logaritmik denklemleri çözmek için kullanacağımız teknik budur. O zaman hadi gidelim!

log 2 (x 2 + 4x + 11) = log 0,5 0,125

Sıradaki ne? Birisi şimdi doğru logaritmayı hesaplamanız veya bunları aynı tabana indirmeniz veya başka bir şeye ihtiyacınız olduğunu söyleyecektir. Ve aslında, şimdi her iki tabanı da aynı forma getirmemiz gerekiyor - ya 2 ya da 0,5. Ama gelin şu kuralı kesin olarak öğrenelim:

Logaritmik bir denklemde ondalık sayılar varsa, bu kesirleri ondalık gösterimden ortak gösterime dönüştürdüğünüzden emin olun. Bu dönüşüm çözümü büyük ölçüde basitleştirebilir.

Böyle bir geçiş, herhangi bir eylem veya dönüşüm gerçekleştirilmeden önce bile hemen gerçekleştirilmelidir. Bir göz atalım:

log 2 (x 2 + 4x + 11) = log 1/2 1/8

Böyle bir kayıt bize ne verir? 1/2 ve 1/8'i negatif üslü kuvvetler olarak temsil edebiliriz:


[Resmin başlığı]

Önümüzde kanonik form var. Argümanları eşitliyoruz ve klasik ikinci dereceden denklemi elde ediyoruz:

x 2 + 4x + 11 = 8

x 2 + 4x + 3 = 0

Önümüzde Vieta formülleri kullanılarak kolayca çözülebilecek aşağıdaki ikinci dereceden denklem var. Lisede benzer görüntüleri kelimenin tam anlamıyla sözlü olarak görmelisiniz:

(x + 3)(x + 1) = 0

x 1 = −3

x 2 = −1

Bu kadar! Orijinal logaritmik denklem çözüldü. İki kökümüz var.

Tanımın alanını tanımlamak için şunu hatırlatmama izin verin: bu durumda x değişkenli fonksiyon yalnızca bir argümanda mevcut olduğundan gerekli değildir. Bu nedenle tanım kapsamı otomatik olarak gerçekleştirilir.

Böylece ilk denklem çözülür. Gelelim ikincisine:

log 0,5 (5x 2 + 9x + 2) = log 3 1/9

log 1/2 (5x 2 + 9x + 2) = log 3 9 −1

Şimdi birinci logaritmanın argümanının negatif üssü olan bir kuvvet olarak da yazılabileceğine dikkat edin: 1/2 = 2 −1. Daha sonra denklemin her iki tarafındaki kuvvetleri çıkarıp her şeyi -1'e bölebilirsiniz:

[Resmin başlığı]

Ve şimdi çok şey başardık önemli adım Logaritmik bir denklemin çözümünde. Belki birisi bir şeyi fark etmemiştir o yüzden açıklamama izin verin.

Denklemimize bakın: hem solda hem de sağda bir log işareti var, ancak solda 2 tabanına göre bir logaritma var ve sağda 3 tabanına göre bir logaritma var. Üç, bir tamsayı kuvveti değildir. iki ve tam tersine 2'nin 3 olduğunu tamsayı derece olarak yazamazsınız.

Sonuç olarak bunlar, yalnızca kuvvetlerin eklenmesiyle birbirine indirgenemeyen, farklı tabanlara sahip logaritmalardır. Bu tür problemleri çözmenin tek yolu bu logaritmaların birinden kurtulmaktır. Bu durumda, hala oldukça basit problemleri ele aldığımız için, sağdaki logaritma basitçe hesaplandı ve en basit denklemi elde ettik - tam olarak bugünkü dersin başında bahsettiğimiz denklem.

Sağdaki 2 sayısını log 2 2 2 = log 2 4 olarak temsil edelim. Sonra logaritma işaretinden kurtuluruz ve elimizde ikinci dereceden bir denklem kalır:

log 2 (5x 2 + 9x + 2) = log 2 4

5x2 + 9x + 2 = 4

5x 2 + 9x - 2 = 0

Önümüzde sıradan bir ikinci dereceden denklem var, ancak x 2'nin katsayısı birden farklı olduğu için indirgenmiyor. Bu nedenle bunu diskriminant kullanarak çözeceğiz:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x 1 = (−9 + 11)/10 = 2/10 = 1/5

x 2 = (−9 − 11)/10 = −2

Bu kadar! Her iki kökü de bulduk, bu da orijinal logaritmik denklemin çözümünü elde ettiğimiz anlamına geliyor. Aslında orijinal problemde x değişkenli fonksiyon yalnızca bir argümanda mevcuttur. Sonuç olarak, tanım alanı üzerinde hiçbir ek kontrole gerek yoktur; bulduğumuz her iki kök de kesinlikle tüm olası kısıtlamaları karşılamaktadır.

Bu, bugünkü video dersinin sonu olabilir, ancak sonuç olarak tekrar söylemek isterim: Logaritmik denklemleri çözerken tüm ondalık kesirleri sıradan kesirlere dönüştürdüğünüzden emin olun. Çoğu durumda bu, çözümlerini büyük ölçüde basitleştirir.

Nadiren, çok nadiren, ondalık kesirlerden kurtulmanın yalnızca hesaplamaları zorlaştırdığı sorunlarla karşılaşırsınız. Ancak bu tür denklemlerde kural olarak ondalık kesirlerden kurtulmaya gerek olmadığı başlangıçta açıktır.

Diğer birçok durumda (özellikle logaritmik denklemleri çözmeye yeni başlıyorsanız), ondalık sayılardan kurtulmaktan ve bunları sıradan sayılara dönüştürmekten çekinmeyin. Çünkü uygulama, bu şekilde sonraki çözümü ve hesaplamaları önemli ölçüde basitleştireceğinizi gösteriyor.

Çözümün incelikleri ve püf noktaları

Bugün daha fazlasına geçiyoruz karmaşık görevler ve temeli sayı değil fonksiyon olan logaritmik bir denklemi çözeceğiz.

Ve bu fonksiyon doğrusal olsa bile, çözüm şemasında küçük değişiklikler yapılması gerekecektir; bunun anlamı, logaritmanın tanım alanına dayatılan ek gerekliliklere indirgenmektedir.

Karmaşık görevler

Bu eğitim oldukça uzun olacak. İçinde birçok öğrencinin hata yaptığı, oldukça ciddi iki logaritmik denklemi analiz edeceğiz. Matematik öğretmeni olarak çalışmalarım sırasında sürekli olarak iki tür hatayla karşılaştım:

  1. Logaritmanın tanım alanının genişlemesi nedeniyle ekstra köklerin ortaya çıkması. Bu tür rahatsız edici hatalardan kaçınmak için her dönüşümü dikkatle izleyin;
  2. Öğrencinin bazı "ince" durumları dikkate almayı unutması nedeniyle kök kaybı - bugün odaklanacağımız durumlar bunlardır.

Bu logaritmik denklemlerle ilgili son derstir. Uzun olacak, karmaşık logaritmik denklemleri analiz edeceğiz. Rahat olun, kendinize bir çay yapın ve başlayalım.

İlk denklem oldukça standart görünüyor:

log x + 1 (x − 0,5) = log x − 0,5 (x + 1)

Her iki logaritmanın da birbirinin ters kopyaları olduğunu hemen belirtelim. Harika formülü hatırlayalım:

log a b = 1/log b a

Bununla birlikte, bu formülün a ve b sayıları yerine x değişkeninin fonksiyonları olması durumunda ortaya çıkan bir takım sınırlamaları vardır:

b > 0

1 ≠ a > 0

Bu gereksinimler logaritmanın tabanı için geçerlidir. Öte yandan, bir kesirde 1 ≠ a > 0 olması gerekir, çünkü yalnızca a değişkeni logaritmanın argümanında yer almakla kalmaz (dolayısıyla a > 0), logaritmanın kendisi de kesirin paydasındadır. . Ancak log b 1 = 0 ve paydanın sıfırdan farklı olması gerekir, yani a ≠ 1.

Yani a değişkeni üzerindeki kısıtlamalar devam ediyor. Peki b değişkenine ne olur? Bir yandan taban b > 0'ı, diğer yandan b ≠ 1 değişkenini ima eder, çünkü logaritmanın tabanı 1'den farklı olmalıdır. Toplamda, formülün sağ tarafından 1 ≠ sonucu çıkar. b > 0.

Ancak sorun şu: Sol logaritmayla ilgili olan birinci eşitsizlikte ikinci koşul (b ≠ 1) eksik. Başka bir deyişle, bu dönüşümü gerçekleştirirken yapmamız gerekenler ayrı ayrı kontrol edin, b argümanının birden farklı olduğunu!

Öyleyse kontrol edelim. Formülümüzü uygulayalım:

[Resmin başlığı]

1 ≠ x - 0,5 > 0; 1 ≠ x + 1 > 0

Dolayısıyla, orijinal logaritmik denklemden, hem a'nın hem de b'nin 0'dan büyük olması ve 1'e eşit olmaması gerektiğini zaten anladık. Bu, logaritmik denklemi kolayca tersine çevirebileceğimiz anlamına gelir:

Yeni bir değişken tanıtmayı öneriyorum:

log x + 1 (x - 0,5) = t

Bu durumda inşaatımız şu şekilde yeniden yazılacaktır:

(t 2 - 1)/t = 0

Payda kareler farkına sahip olduğumuzu unutmayın. Kısaltılmış çarpma formülünü kullanarak karelerin farkını ortaya çıkarıyoruz:

(t − 1)(t + 1)/t = 0

Bir kesrin payı sıfır ve paydası sıfırdan farklı olduğunda kesir sıfıra eşittir. Ancak pay bir çarpım içerdiğinden her faktörü sıfıra eşitliyoruz:

t1 = 1;

t2 = −1;

t ≠ 0.

Görüldüğü gibi t değişkeninin her iki değeri de bize uygundur. Ancak çözüm burada bitmiyor çünkü t'yi değil x'in değerini bulmamız gerekiyor. Logaritmaya dönüp şunu elde ederiz:

log x + 1 (x - 0,5) = 1;

log x + 1 (x − 0,5) = −1.

Bu denklemlerin her birini kanonik forma koyalım:

log x + 1 (x − 0,5) = log x + 1 (x + 1) 1

log x + 1 (x − 0,5) = log x + 1 (x + 1) −1

İlk durumda logaritma işaretinden kurtuluruz ve argümanları eşitleriz:

x - 0,5 = x + 1;

x - x = 1 + 0,5;

Böyle bir denklemin kökleri yoktur, dolayısıyla ilk logaritmik denklemin de kökleri yoktur. Ancak ikinci denklemde her şey çok daha ilginç:

(x − 0,5)/1 = 1/(x + 1)

Orantıyı çözersek şunu elde ederiz:

(x − 0,5)(x + 1) = 1

Logaritmik denklemleri çözerken tüm ondalık kesirleri sıradan kesirler olarak kullanmanın çok daha uygun olduğunu hatırlatmama izin verin, o yüzden denklemimizi şu şekilde yeniden yazalım:

(x − 1/2)(x + 1) = 1;

x 2 + x − 1/2x − 1/2 − 1 = 0;

x 2 + 1/2x - 3/2 = 0.

Önümüzde aşağıdaki ikinci dereceden denklem var, Vieta formülleri kullanılarak kolayca çözülebilir:

(x + 3/2) (x - 1) = 0;

x 1 = −1,5;

x2 = 1.

İki kökümüz var - bunlar orijinal logaritmik denklemi çözmeye adaylar. Aslında cevaba hangi köklerin gireceğini anlamak için asıl soruna dönelim. Şimdi her bir kökümüzün tanım alanına uyup uymadığını kontrol edeceğiz:

1,5 ≠ x > 0,5; 0 ≠ x > −1.

Bu gereksinimler çifte eşitsizliğe eşdeğerdir:

1 ≠ x > 0,5

Buradan x = −1,5 kökünün bize uymadığını, ancak x = 1'in oldukça uyduğunu hemen görüyoruz. Bu nedenle x = 1 logaritmik denklemin son çözümüdür.

Gelelim ikinci göreve:

günlük x 25 + günlük 125 x 5 = günlük 25 x 625

İlk bakışta tüm logaritmaların farklı temelleri ve farklı argümanları var gibi görünebilir. Bu tür yapılarla ne yapmalı? Öncelikle 25, 5 ve 625 sayılarının 5'in kuvvetleri olduğuna dikkat edin:

25 = 5 2 ; 625 = 5 4

Şimdi logaritmanın harika özelliğinden yararlanalım. Önemli olan, bir argümandan güçleri faktörler biçiminde çıkarabilmenizdir:

log a b n = n ∙ log a b

Bu dönüşüm, b'nin bir fonksiyonla değiştirilmesi durumunda da kısıtlamalara tabidir. Ancak bizim için b yalnızca bir sayıdır ve hiçbir ek kısıtlama ortaya çıkmaz. Denklemimizi yeniden yazalım:

2 ∙ log x 5 + log 125 x 5 = 4 ∙ log 25 x 5

Log işaretini içeren üç terimli bir denklem elde ettik. Ayrıca her üç logaritmanın argümanları eşittir.

Logaritmaları ters çevirerek aynı tabana (5) getirmenin zamanı geldi. b değişkeni bir sabit olduğundan tanım alanında herhangi bir değişiklik meydana gelmez. Hemen yeniden yazıyoruz:


[Resmin başlığı]

Beklendiği gibi paydada da aynı logaritmalar ortaya çıktı. Değişkeni değiştirmenizi öneririm:

log 5 x = t

Bu durumda denklemimiz şu şekilde yeniden yazılacaktır:

Payı yazıp parantezleri açalım:

2 (t + 3) (t + 2) + t (t + 2) - 4t (t + 3) = 2 (t 2 + 5t + 6) + t 2 + 2t - 4t 2 - 12t = 2t 2 + 10t + 12 + t 2 + 2t − 4t 2 − 12t = −t 2 + 12

Kesirimize dönelim. Pay sıfır olmalıdır:

[Resmin başlığı]

Ve payda sıfırdan farklıdır:

t ≠ 0; t ≠ −3; t ≠ −2

Son gereksinimler otomatik olarak yerine getirilir çünkü bunların tümü tam sayılara "bağlıdır" ve tüm yanıtlar irrasyoneldir.

Böylece kesirli rasyonel denklem çözüldü, t değişkeninin değerleri bulundu. Logaritmik denklemi çözmeye dönelim ve t'nin ne olduğunu hatırlayalım:

[Resmin başlığı]

Bu denklemi kanonik forma indirgeyerek derecesi irrasyonel olan bir sayı elde ederiz. Bunun kafanızı karıştırmasına izin vermeyin; bu tür argümanlar bile eşitlenebilir:

[Resmin başlığı]

İki kökümüz var. Daha doğrusu, adayların iki yanıtı var; bunların tanım alanına uygunluğu açısından kontrol edelim. Logaritmanın tabanı x değişkeni olduğundan aşağıdakilere ihtiyacımız var:

1 ≠ x > 0;

Aynı başarıyla x ≠ 1/125 olduğunu iddia ediyoruz, aksi takdirde ikinci logaritmanın tabanı birliğe dönecektir. Son olarak üçüncü logaritma için x ≠ 1/25.

Toplamda dört kısıtlama aldık:

1 ≠ x > 0; x ≠ 1/125; x ≠ 1/25

Şimdi soru şu: Köklerimiz bu gereksinimleri karşılıyor mu? Tabii ki tatmin ediyorlar! Çünkü 5'in herhangi bir kuvveti sıfırdan büyük olacaktır ve x > 0 gereksinimi otomatik olarak karşılanır.

Öte yandan, 1 = 5 0, 1/25 = 5 −2, 1/125 = 5 −3 yani köklerimiz için bu kısıtlamalar (ki bunun üssünde irrasyonel bir sayı olduğunu hatırlatayım) da tatmin olmuşlardır ve her iki cevap da sorunun çözümüdür.

Yani son cevabımız var. Bu görevde iki önemli nokta var:

  1. Argüman ve taban yer değiştirdiğinde logaritmayı çevirirken dikkatli olun. Bu tür dönüşümler tanımın kapsamına gereksiz kısıtlamalar getirmektedir.
  2. Logaritmaları dönüştürmekten korkmayın: bunlar yalnızca tersine çevrilmekle kalmaz, aynı zamanda toplam formülü kullanılarak genişletilebilir ve genellikle logaritmik ifadeleri çözerken üzerinde çalıştığınız formüller kullanılarak değiştirilebilir. Ancak şunu asla unutmayın: Bazı dönüşümler tanımın kapsamını genişletir, bazıları ise daraltır.


Örnekler:

\(\log_(2)(⁡x) = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡((x^2-3))=\log_3⁡((2x))\)
\(\log_(x+1)((x^2+3x-7))=2\)
\(\lg^2⁡((x+1))+10=11 \lg⁡((x+1))\)

Logaritmik denklemler nasıl çözülür:

Logaritmik bir denklemi çözerken, onu \(\log_a⁡(f(x))=\log_a⁡(g(x))\) biçimine dönüştürmeye çalışmalı ve ardından \(f(x)'e geçiş yapmalısınız. )=g(x) \).

\(\log_a⁡(f(x))=\log_a⁡(g(x))\) \(⇒\) \(f(x)=g(x)\).


Örnek:\(\log_2⁡(x-2)=3\)

Çözüm:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Muayene:\(10>2\) - DL için uygun
Cevap:\(x=10\)

ODZ:
\(x-2>0\)
\(x>2\)

Çok önemli! Bu geçiş yalnızca aşağıdaki durumlarda yapılabilir:

Orijinal denklem için yazdınız ve sonunda bulunanların DL'ye dahil olup olmadığını kontrol edeceksiniz. Bu yapılmazsa fazladan kökler ortaya çıkabilir, bu da yanlış karar anlamına gelir.

Soldaki ve sağdaki sayı (veya ifade) aynıdır;

Sol ve sağdaki logaritmalar “saftır” yani çarpma, bölme vb. olmamalıdır. – Eşittir işaretinin her iki tarafında yalnızca tek logaritmalar.

Örneğin:

Denklem 3 ve 4'ün logaritmanın gerekli özelliklerini uygulayarak kolayca çözülebileceğini unutmayın.

Örnek . \(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\) denklemini çözün

Çözüm :

ODZ'yi yazalım: \(x>0\).

\(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\) ODZ: \(x>0\)

Logaritmanın önünde solda katsayı, sağda logaritmanın toplamı bulunur. Bu bizi rahatsız ediyor. Şu özelliğe göre ikisini \(x\) üssüne taşıyalım: \(n \log_b(⁡a)=\log_b⁡(a^n)\). Logaritmaların toplamını şu özelliğe göre bir logaritma olarak temsil edelim: \(\log_a⁡b+\log_a⁡c=\log_a(⁡bc)\)

\(\log_8⁡(x^2)=\log_8⁡25\)

Denklemi \(\log_a⁡(f(x))=\log_a⁡(g(x))\) formuna indirdik ve ODZ'yi yazdık, bu da \(f(x) formuna geçebileceğimiz anlamına geliyor =g(x)\ ).

Olmuş . Bunu çözüyoruz ve köklerini alıyoruz.

\(x_1=5\) \(x_2=-5\)

Köklerin ODZ'ye uygun olup olmadığını kontrol ediyoruz. Bunu yapmak için, \(x>0\) yerine \(x\) yerine \(5\) ve \(-5\) koyarız. Bu işlem ağızdan yapılabilir.

\(5>0\), \(-5>0\)

İlk eşitsizlik doğru, ikincisi değil. Bu, \(5\)'in denklemin kökü olduğu, ancak \(-5\)'nin olmadığı anlamına gelir. Cevabını yazıyoruz.

Cevap : \(5\)


Örnek : \(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) denklemini çözün

Çözüm :

ODZ'yi yazalım: \(x>0\).

\(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) ODZ: \(x>0\)

kullanılarak çözülen tipik bir denklem. \(\log_2⁡x\) öğesini \(t\) ile değiştirin.

\(t=\log_2⁡x\)

Her zamanki gibi aldık. Köklerini arıyoruz.

\(t_1=2\) \(t_2=1\)

Ters değiştirme yapma

\(\log_2(⁡x)=2\) \(\log_2(⁡x)=1\)

Sağ tarafları logaritma olarak temsil ederek dönüştürüyoruz: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) ve \(1=\log_2⁡2\)

\(\log_2(⁡x)=\log_2⁡4\) \(\log_2(⁡x)=\log_2⁡2 \)

Artık denklemlerimiz \(\log_a⁡(f(x))=\log_a⁡(g(x))\) olur ve \(f(x)=g(x)\)'e geçiş yapabiliriz.

\(x_1=4\) \(x_2=2\)

ODZ'nin köklerinin yazışmalarını kontrol ediyoruz. Bunu yapmak için, \(x\) yerine \(x>0\) eşitsizliğinde \(4\) ve \(2\)'yi değiştirin.

\(4>0\) \(2>0\)

Her iki eşitsizlik de doğrudur. Bu, hem \(4\) hem de \(2\)'nin denklemin kökleri olduğu anlamına gelir.

Cevap : \(4\); \(2\).

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye başvuru yaptığınızda adınız, telefon numaranız, adresiniz gibi çeşitli bilgileri toplayabiliriz. E-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler sizinle iletişime geçmemize ve sizi benzersiz teklifler, promosyonlar ve diğer etkinlikler ve yaklaşan etkinlikler.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak Devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.