Bir denklem sistemini çözmektir. Doğrusal denklem sistemleri. Sistemler nasıl çözülür?

Duvar kağıdı

Sistemi çöz iki bilinmeyenle - bu, verilen denklemlerin her birini karşılayan tüm değişken değer çiftlerini bulmak anlamına gelir. Bu çiftlerin her birine denir sistem çözümü.

Örnek:
\(x=3\);\(y=-1\) değer çifti ilk sistemin çözümüdür, çünkü bu üçleri ve eksileri sisteme yerleştirirken \(x\) ve \ yerine (y\), her iki denklem de doğru eşitliklere dönüşecektir \(\begin(cases)3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end( vakalar)\)

Ancak \(x=1\); \(y=-2\) - birinci sistemin çözümü değildir, çünkü ikame sonrasında ikinci denklem “yakınsamaz” \(\begin(cases)1-2\cdot(-2)=5 \\3 \cdot1+2 \cdot(-2)≠7 \end(case)\)

Bu tür çiftlerin genellikle daha kısa yazıldığını unutmayın: "\(x=3\); \(y=-1\)" yerine şu şekilde yazarlar: \((3;-1)\).

Doğrusal denklem sistemi nasıl çözülür?

Sistemleri çözmenin üç ana yolu vardır doğrusal denklemler:

  1. İkame yöntemi.
    1. \(\begin(case)x-2y=5\\3x+2y=7 \end(case)\)\(\Leftrightarrow\) \(\begin(case)x=5+2y\\3x+2y= 7\end(case)\)\(\Leftrightarrow\)

      Elde edilen ifadeyi bu değişken yerine sistemin başka bir denkleminde değiştirin.

      \(\Leftrightarrow\) \(\begin(case)x=5+2y\\3(5+2y)+2y=7\end(case)\)\(\Leftrightarrow\)

    2. \(\begin(case)13x+9y=17\\12x-2y=26\end(case)\)

      İkinci denklemde her terim çifttir, dolayısıyla denklemi \(2\)'ye bölerek basitleştiririz.

      \(\begin(case)13x+9y=17\\6x-y=13\end(case)\)

      Bu sistem aşağıdaki yollardan herhangi biriyle çözülebilir, ancak bana öyle geliyor ki ikame yöntemi burada en uygun olanı. İkinci denklemden y'yi ifade edelim.

      \(\begin(case)13x+9y=17\\y=6x-13\end(case)\)

      İlk denklemde \(y\) yerine \(6x-13\) yazalım.

      \(\begin(case)13x+9(6x-13)=17\\y=6x-13\end(case)\)

      İlk denklem sıradan bir denklem haline geldi. Hadi çözelim.

      Öncelikle parantezleri açalım.

      \(\begin(case)13x+54x-117=17\\y=6x-13\end(case)\)

      \(117\)'yi sağa taşıyıp getirelim benzer terimler.

      \(\begin(case)67x=134\\y=6x-13\end(case)\)

      İlk denklemin her iki tarafını da \(67\)'ye bölelim.

      \(\begin(case)x=2\\y=6x-13\end(case)\)

      Yaşasın, \(x\)'i bulduk! Değerini ikinci denklemde yerine koyalım ve \(y\)'yi bulalım.

      \(\begin(cases)x=2\\y=12-13\end(cases)\)\(\Leftrightarrow\)\(\begin(cases)x=2\\y=-1\end(cases )\)

      Cevabını yazalım.

Konuyla ilgili ders ve sunum: "Denklem sistemleri. Değiştirme yöntemi, toplama yöntemi, yeni bir değişken ekleme yöntemi"

Ek materyaller
Sevgili kullanıcılar, yorumlarınızı, yorumlarınızı, dileklerinizi bırakmayı unutmayın! Tüm materyaller antivirüs programı ile kontrol edilmiştir.

9. sınıf için Integral çevrimiçi mağazasında eğitim yardımcıları ve simülatörler
Atanasyan L.S.'nin ders kitapları için simülatör Ders kitapları için simülatör Pogorelova A.V.

Eşitsizlik sistemlerini çözme yöntemleri

Arkadaşlar, denklem sistemlerini inceledik ve bunları grafikler kullanarak nasıl çözeceğimizi öğrendik. Şimdi sistemleri çözmenin başka hangi yollarının mevcut olduğunu görelim?
Bunları çözme yöntemlerinin neredeyse tamamı 7. sınıfta okuduklarımızdan farklı değil. Şimdi çözmeyi öğrendiğimiz denklemlere göre bazı ayarlamalar yapmamız gerekiyor.
Açıklanan tüm yöntemlerin özü bu ders Bir sistemin daha basit bir şekil ve çözüm yöntemiyle eşdeğer bir sistemle değiştirilmesidir. Arkadaşlar, eşdeğer sistemin ne olduğunu unutmayın.

İkame yöntemi

İki değişkenli denklem sistemlerini çözmenin ilk yolu bizim tarafımızdan iyi bilinmektedir - bu, ikame yöntemidir. Bu yöntemi doğrusal denklemleri çözmek için kullandık. Şimdi genel durumda denklemlerin nasıl çözüleceğini görelim.

Karar verirken nasıl ilerlemelisiniz?
1. Değişkenlerden birini diğerine göre ifade ediniz. Denklemlerde en sık kullanılan değişkenler x ve y'dir. Denklemlerden birinde bir değişkeni diğerine göre ifade ediyoruz. İpucu: Çözmeye başlamadan önce her iki denkleme de dikkatlice bakın ve değişkeni ifade etmenin daha kolay olduğu denklemi seçin.
2. Ortaya çıkan ifadeyi, ifade edilen değişken yerine ikinci denklemde değiştirin.
3. Bulduğumuz denklemi çözün.
4. Ortaya çıkan çözümü ikinci denklemde yerine koyun. Birkaç çözüm varsa, birkaç çözümü kaybetmemek için bunları sırayla değiştirmeniz gerekir.
5. Sonuç olarak, cevap olarak yazılması gereken bir çift $(x;y)$ sayısını alacaksınız.

Örnek.
İki değişkenli bir sistemi ikame yöntemini kullanarak çözün: $\begin(cases)x+y=5, \\xy=6\end(cases)$.

Çözüm.
Denklemlerimize daha yakından bakalım. Açıkçası, ilk denklemde y'yi x cinsinden ifade etmek çok daha basittir.
$\begin(cases)y=5-x, \\xy=6\end(case)$.
İlk ifadeyi ikinci denklemde $\begin(cases)y=5-x, \\x(5-2x)=6\end(cases)$ yerine koyalım.
İkinci denklemi ayrı ayrı çözelim:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
İkinci denklem $x_1=2$ ve $x_2=3$ için iki çözüm elde ettik.
İkinci denklemde sırayla yerine koyarız.
$x=2$ ise $y=3$ olur. $x=3$ ise $y=2$ olur.
Cevap iki çift sayı olacaktır.
Cevap: $(2;3)$ ve $(3;2)$.

Cebirsel toplama yöntemi

Bu yöntemi 7. sınıfta da işlemiştik.
Denklemin her iki tarafını da çarpmayı unutmadan, iki değişkenli bir rasyonel denklemi herhangi bir sayıyla çarpabileceğimiz bilinmektedir. Denklemlerden birini belirli bir sayıyla çarptık, böylece elde edilen denklemi sistemin ikinci denklemine eklerken değişkenlerden biri yok oldu. Daha sonra kalan değişken için denklem çözüldü.
Değişkenlerden birini yok etmek her zaman mümkün olmasa da bu yöntem hala işe yarıyor. Ancak denklemlerden birinin biçimini önemli ölçüde basitleştirmenize olanak tanır.

Örnek.
Sistemi çözün: $\begin(cases)2x+xy-1=0, \\4y+2xy+6=0\end(cases)$.

Çözüm.
İlk denklemi 2 ile çarpalım.
$\begin(case)4x+2xy-2=0, \\4y+2xy+6=0\end(case)$.
Birinci denklemden ikinciyi çıkaralım.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Gördüğünüz gibi ortaya çıkan denklemin formu orijinalinden çok daha basittir. Artık yerine koyma yöntemini kullanabiliriz.
$\begin(cases)4x-4y-8=0, \\4y+2xy+6=0\end(cases)$.
Ortaya çıkan denklemde x'i y cinsinden ifade edelim.
$\begin(cases)4x=4y+8, \\4y+2xy+6=0\end(cases)$.
$\begin(cases)x=y+2, \\4y+2(y+2)y+6=0\end(cases)$.
$\begin(cases)x=y+2, \\4y+2y^2+4y+6=0\end(cases)$.
$\begin(cases)x=y+2, \\2y^2+8y+6=0\end(cases)$.
$\begin(cases)x=y+2, \\y^2+4y+3=0\end(case)$.
$\begin(cases)x=y+2, \\(y+3)(y+1)=0\end(cases)$.
$y=-1$ ve $y=-3$ elde ettik.
Bu değerleri sırasıyla ilk denklemde yerine koyalım. İki çift sayı elde ederiz: $(1;-1)$ ve $(-1;-3)$.
Cevap: $(1;-1)$ ve $(-1;-3)$.

Yeni bir değişken ekleme yöntemi

Bu yöntemi de inceledik ama gelin tekrar bakalım.

Örnek.
Sistemi çözün: $\begin(cases)\frac(x)(y)+\frac(2y)(x)=3, \\2x^2-y^2=1\end(cases)$.

Çözüm.
$t=\frac(x)(y)$ yerine geçeni tanıtalım.
İlk denklemi yeni bir değişkenle yeniden yazalım: $t+\frac(2)(t)=3$.
Ortaya çıkan denklemi çözelim:
$\frac(t^2-3t+2)(t)=0$.
$\frac((t-2)(t-1))(t)=0$.
$t=2$ veya $t=1$ elde ederiz. $t=\frac(x)(y)$ ters değişimini tanıtalım.
Şunu elde ettik: $x=2y$ ve $x=y$.

İfadelerin her biri için orijinal sistemin ayrı ayrı çözülmesi gerekir:
$\begin(cases)x=2y, \\2x^2-y^2=1\end(case)$. $\begin(cases)x=y, \\2x^2-y^2=1\end(case)$.
$\begin(cases)x=2y, \\8y^2-y^2=1\end(case)$. $\begin(cases)x=y, \\2y^2-y^2=1\end(case)$.
$\begin(case)x=2y, \\7y^2=1\end(case)$. $\begin(case)x=2y, \\y^2=1\end(case)$.
$\begin(cases)x=2y, \\y=±\frac(1)(\sqrt(7))\end(cases)$. $\begin(case)x=y, \\y=±1\end(case)$.
$\begin(cases)x=±\frac(2)(\sqrt(7)), \\y=±\frac(1)(\sqrt(7))\end(cases)$. $\begin(case)x=±1, \\y=±1\end(case)$.
Dört çift çözüm aldık.
Cevap: $(\frac(2)(\sqrt(7));\frac(1)(\sqrt(7)))$; $(-\frac(2)(\sqrt(7));-\frac(1)(\sqrt(7)))$; $(1;1)$; $(-1;-1)$.

Örnek.
Sistemi çözün: $\begin(cases)\frac(2)(x-3y)+\frac(3)(2x+y)=2, \\\frac(8)(x-3y)-\frac( 9 )(2x+y)=1\end(durum)$.

Çözüm.
Değiştirmeyi tanıtalım: $z=\frac(2)(x-3y)$ ve $t=\frac(3)(2x+y)$.
Orijinal denklemleri yeni değişkenlerle yeniden yazalım:
$\begin(case)z+t=2, \\4z-3t=1\end(case)$.
Cebirsel toplama yöntemini kullanalım:
$\begin(case)3z+3t=6, \\4z-3t=1\end(case)$.
$\begin(case)3z+3t+4z-3t=6+1, \\4z-3t=1\end(case)$.
$\begin(cases)7z=7, \\4z-3t=1\end(cases)$.
$\begin(cases)z=1, \\-3t=1-4\end(case)$.
$\begin(case)z=1, \\t=1\end(case)$.
Ters ikameyi tanıtalım:
$\begin(cases)\frac(2)(x-3y)=1, \\\frac(3)(2x+y)=1\end(cases)$.
$\begin(case)x-3y=2, \\2x+y=3\end(case)$.
Değiştirme yöntemini kullanalım:
$\begin(case)x=2+3y, \\4+6y+y=3\end(case)$.
$\begin(cases)x=2+3y, \\7y=-1\end(case)$.
$\begin(cases)x=2+3(\frac(-1)(7)), \\y=\frac(-1)(7)\end(cases)$.
$\begin(cases)x=\frac(11)(7), \\x=-\frac(11)(7)\end(cases)$.
Cevap: $(\frac(11)(7);-\frac(1)(7))$.

Bağımsız çözüm için denklem sistemleriyle ilgili problemler

Sistemleri çözün:
1. $\begin(case)2x-2y=6,\\xy =-2\end(case)$.
2. $\begin(case)x+y^2=3, \\xy^2=4\end(case)$.
3. $\begin(case)xy+y^2=3,\\y^2-xy=5\end(case)$.
4. $\begin(case)\frac(2)(x)+\frac(1)(y)=4, \\\frac(1)(x)+\frac(3)(y)=9\ bitiş(durumlar)$.
5. $\begin(case)\frac(5)(x^2-xy)+\frac(4)(y^2-xy)=-\frac(1)(6), \\\frac(7) )(x^2-xy)-\frac(3)(y^2-xy)=\frac(6)(5)\end(cases)$.

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye başvuru yaptığınızda adınız, telefon numaranız, adresiniz gibi çeşitli bilgileri toplayabiliriz. E-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler sizinle iletişime geçmemize ve sizi benzersiz teklifler, promosyonlar ve diğer etkinlikler ve yaklaşan etkinlikler.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak Devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

Bu derste bir doğrusal denklem sistemini çözme yöntemlerine bakacağız. Yüksek matematik dersinde, doğrusal denklem sistemlerinin hem ayrı görevler biçiminde, örneğin "Cramer formüllerini kullanarak sistemi çözme" hem de diğer problemleri çözme sırasında çözülmesi gerekir. Doğrusal denklem sistemleri yüksek matematiğin neredeyse tüm dallarında ele alınmalıdır.

İlk önce küçük bir teori. Ne bu durumda Matematiksel "doğrusal" kelimesinin kısaltması mı? Bu, sistemin denklemlerinin Tüm dahil edilen değişkenler birinci derecede: gibi süslü şeyler olmadan yalnızca matematik olimpiyatlarına katılanların memnun olduğu vb.

İÇİNDE yüksek Matematik Değişkenleri belirlemek için yalnızca çocukluktan tanıdık harfler kullanılmaz.
Oldukça popüler bir seçenek, indeksli değişkenlerdir: .
Veya ilk harfler Latin alfabesi, küçük ve büyük:
Bulmak o kadar da nadir değil Yunan harfleri: – birçok kişi tarafından “alfa, beta, gama” olarak bilinir. Ve ayrıca örneğin “mu” harfinin yer aldığı endekslerden oluşan bir set:

Bir veya daha fazla harf kümesinin kullanımı, yüksek matematiğin bir doğrusal denklem sistemiyle karşı karşıya olduğumuz bölümüne bağlıdır. Dolayısıyla, örneğin integralleri ve diferansiyel denklemleri çözerken karşılaşılan doğrusal denklem sistemlerinde, notasyonu kullanmak gelenekseldir.

Ancak değişkenler nasıl belirlenirse belirlensin, bir doğrusal denklem sistemini çözmenin ilkeleri, yöntemleri ve yöntemleri değişmez. Bu nedenle, eğer . Ve ne kadar komik görünse de, bu gösterimlere sahip bir doğrusal denklem sistemi de çözülebilir.

Makalenin oldukça uzun olacağına dair bir his var, bu yüzden küçük bir içindekiler tablosu. Yani, sıralı “bilgilendirme” şu şekilde olacaktır:

– Bir doğrusal denklem sistemini ikame yöntemini (“okul yöntemi”) kullanarak çözme;
– Sistem denklemlerini terim terim toplayarak (çıkararak) sistemi çözmek;
– Sistemin Cramer formüllerini kullanarak çözümü;
– Ters matris kullanarak sistemi çözme;
– Gauss yöntemini kullanarak sistemi çözme.

Herkes okul matematik derslerinden doğrusal denklem sistemlerine aşinadır. Temel olarak tekrarla başlıyoruz.

İkame yöntemini kullanarak bir doğrusal denklem sistemini çözme

Bu method"okul yöntemi" veya bilinmeyenleri ortadan kaldırma yöntemi olarak da adlandırılabilir. Mecazi anlamda "tamamlanmamış bir Gauss yöntemi" olarak da adlandırılabilir.

örnek 1


Burada bize iki bilinmeyenli iki denklem sistemi veriliyor. Serbest terimlerin (5 ve 7 sayıları) denklemin sol tarafında bulunduğunu unutmayın. Genel olarak konuşursak, nerede oldukları önemli değil, solda veya sağda, sadece yüksek matematik problemlerinde genellikle bu şekilde konumlandırılırlar. Ve böyle bir kayıt karışıklığa yol açmamalı, gerekirse sistem her zaman "her zamanki gibi" yazılabilir: . Bir terimi bir bölümden diğerine taşırken işaretinin değişmesi gerektiğini unutmayın.

Bir doğrusal denklem sistemini çözmek ne anlama gelir? Bir denklem sistemini çözmek, çözümlerinin çoğunu bulmak anlamına gelir. Bir sistemin çözümü, içinde yer alan tüm değişkenlerin değerlerinin bir kümesidir, bu da sistemin HER denklemini gerçek bir eşitliğe dönüştürür. Ayrıca sistem şu şekilde olabilir: ortak olmayan (çözümleri yok).Endişelenme, bu genel tanım=) Her c-we denklemini sağlayan tek bir “x” değerimiz ve bir “y” değerimiz olacak.

Sistemi çözmek için sınıfta aşina olabileceğiniz grafiksel bir yöntem var. Bir çizgiyle ilgili en basit problemler. Orada bahsetmiştim geometrik anlamda iki bilinmeyenli iki doğrusal denklem sistemi. Ama artık cebirin, sayıların-sayıların, eylem-eylemlerin çağı geldi.

Haydi karar verelim: ifade ettiğimiz ilk denklemden:
Ortaya çıkan ifadeyi ikinci denklemde değiştiririz:

Parantezleri açıyoruz, benzer terimleri ekliyoruz ve değeri buluyoruz:

Sonra ne için dans ettiğimizi hatırlıyoruz:
Değerini zaten biliyoruz, geriye kalan tek şey bulmak:

Cevap:

HERHANGİ bir denklem sistemi HERHANGİ bir şekilde çözüldükten sonra, kontrol etmenizi şiddetle tavsiye ederim. (sözlü olarak, taslak üzerinde veya hesap makinesinde). Neyse ki bu kolay ve hızlı bir şekilde yapılır.

1) Bulunan cevabı ilk denklemde değiştirin:

– doğru eşitlik elde edilir.

2) Bulunan cevabı ikinci denklemde değiştirin:

– doğru eşitlik elde edilir.

Ya da daha basit bir ifadeyle “her şey bir araya geldi”

Göz önünde bulundurulan çözüm yöntemi tek çözüm değildir; ilk denklemden ifade etmek mümkündü ve değil.
Bunun tersini de yapabilirsiniz; ikinci denklemden bir şeyi ifade edebilir ve onu ilk denklemde değiştirebilirsiniz. Bu arada, dört yöntemden en dezavantajlı olanının ikinci denklemden ifade etmek olduğunu unutmayın:

Sonuç kesirler, ama neden? Daha rasyonel bir çözüm var.

Ancak bazı durumlarda kesirler olmadan hala yapamazsınız. Bu bağlamda ifadeyi NASIL yazdığıma dikkatinizi çekmek isterim. Böyle değil: ve hiçbir durumda böyle değil: .

Eğer yüksek matematikte uğraşıyorsanız kesirli sayılar, ardından tüm hesaplamaları sıradan uygunsuz kesirlerle yapmaya çalışın.

Kesinlikle ve değil ya da!

Virgül yalnızca bazen kullanılabilir, özellikle de bir sorunun nihai yanıtıysa ve bu numarayla başka bir işlem yapılmasına gerek yoksa.

Pek çok okuyucu muhtemelen şunu düşündü: “Bunu neden yapıyorsunuz? detaylı açıklama Düzeltme sınıfına gelince, her şey açık.” Öyle bir şey yok, çok basit bir okul örneği gibi görünüyor, ama ÇOK önemli pek çok sonuç var! İşte burada bir başkası:

Herhangi bir görevi yeteneğinizin en iyi şekilde tamamlamaya çalışmalısınız. rasyonel bir şekilde . Sadece zamandan ve sinirlerden tasarruf sağladığı ve aynı zamanda hata yapma olasılığını azalttığı için.

Yüksek matematikteki bir problemde iki bilinmeyenli iki doğrusal denklem sistemiyle karşılaşırsanız, o zaman her zaman yerine koyma yöntemini kullanabilirsiniz (sistemin başka bir yöntemle çözülmesi gerektiği belirtilmediği sürece). enayi olduğunuzu ve “okul yöntemini” kullandığınız için notunuzu düşüreceğinizi düşünün "
Ayrıca bazı durumlarda daha fazla sayıda değişkenle ikame yönteminin kullanılması da tavsiye edilebilir.

Örnek 2

Üç bilinmeyenli doğrusal denklem sistemini çözme

Kesirli bir rasyonel fonksiyonun integralini bulduğumuzda, belirsiz katsayılar yöntemi denilen yöntemi kullanırken sıklıkla benzer bir denklem sistemi ortaya çıkar. Söz konusu sistem tarafımdan oradan alınmıştır.

İntegrali bulurken amaç hızlı Cramer formüllerini, ters matris yöntemini vb. kullanmak yerine katsayıların değerlerini bulun. Dolayısıyla bu durumda ikame yöntemi uygundur.

Herhangi bir denklem sistemi verildiğinde, her şeyden önce onu HEMEN basitleştirmenin mümkün olup olmadığını bulmak arzu edilir. Sistemin denklemlerini incelediğimizde sistemin ikinci denkleminin 2'ye bölünebileceğini görüyoruz ve şunu yapıyoruz:

Referans: matematiksel işaret “bundan şunu çıkar” anlamına gelir ve sıklıkla problem çözmede kullanılır.

Şimdi denklemleri inceleyelim; bazı değişkenleri diğerleri cinsinden ifade etmemiz gerekiyor. Hangi denklemi seçmeliyim? Muhtemelen bu amaç için en kolay yolun sistemin ilk denklemini almak olduğunu tahmin etmişsinizdir:

Burada hangi değişken ifade edilirse edilsin, aynı kolaylıkla veya ifade edilebilir.

Daha sonra, ifadesini sistemin ikinci ve üçüncü denklemlerinde yerine koyarız:

Parantezleri açıyoruz ve benzer terimleri sunuyoruz:

Üçüncü denklemi 2'ye bölün:

İkinci denklemden üçüncü denklemi ifade edip yerine koyuyoruz:

Bulduğumuz üçüncü denklemden hemen hemen her şey hazır:
İkinci denklemden:
İlk denklemden:

Kontrol edin: Değişkenlerin bulunan değerlerini sistemdeki her denklemin sol tarafına değiştirin:

1)
2)
3)

Denklemlerin karşılık gelen sağ tarafları elde edilir, böylece çözüm doğru bulunur.

Örnek 3

4 bilinmeyenli doğrusal denklem sistemini çözme

Bu bir örnektir bağımsız karar(Dersin sonunda cevap verin).

Sistem denklemlerinin terim terim toplanması (çıkarılması) yoluyla sistemin çözülmesi

Doğrusal denklem sistemlerini çözerken, “okul yöntemini” değil, sistemin denklemlerini dönem dönem toplama (çıkarma) yöntemini kullanmaya çalışmalısınız. Neden? Bu, zamandan tasarruf sağlar ve hesaplamaları basitleştirir, ancak artık her şey daha net hale gelecektir.

Örnek 4

Bir doğrusal denklem sistemini çözün:

İlk örnekteki sistemin aynısını aldım.
Denklem sistemini analiz ettiğimizde, değişkenin katsayılarının büyüklük bakımından aynı ve işaret bakımından zıt (-1 ve 1) olduğunu fark ederiz. Böyle bir durumda denklemler terim terim eklenebilir:

Kırmızıyla daire içine alınmış eylemler ZİHİNSEL olarak gerçekleştirilir.
Gördüğünüz gibi terim terim toplama işlemi sonucunda değişkeni kaybettik. Aslında olan da bu yöntemin özü değişkenlerden birinden kurtulmaktır.

Önceki paragrafta tartışılan grafiksel yöntemden daha güvenilirdir.

İkame yöntemi

Bu yöntemi 7. sınıfta doğrusal denklem sistemlerini çözmek için kullandık. 7. sınıfta geliştirilen algoritma, iki x ve y değişkenli (tabii ki değişkenler başka harflerle de gösterilebilir, bu önemli değil) herhangi iki denklemden (doğrusal olmak zorunda değil) oluşan sistemleri çözmek için oldukça uygundur. Aslında bu algoritmayı önceki paragrafta iki basamaklı sayı probleminin bir denklem sistemi olan matematiksel bir modele yol açtığı durumlarda kullanmıştık. Yukarıdaki denklem sistemini ikame yöntemini kullanarak çözdük (bkz. § 4'teki örnek 1).

İki değişkenli x, y içeren iki denklem sistemini çözerken ikame yöntemini kullanmaya yönelik bir algoritma.

1. Sistemin bir denkleminden y'yi x cinsinden ifade edin.
2. Sonuçta elde edilen ifadeyi y yerine sistemin başka bir denkleminde değiştirin.
3. x için elde edilen denklemi çözün.
4. Üçüncü adımda bulunan denklemin köklerinden her birini, birinci adımda elde edilen y'den x'e kadar olan ifadede x yerine değiştirin.
5. Cevabı sırasıyla üçüncü ve dördüncü adımlarda bulunan değer çiftleri (x; y) şeklinde yazın.


4) Y'nin bulunan değerlerinin her birini birer birer x = 5 - 3 formülüne yazın. Eğer o zaman
5) (2; 1) çiftleri ve belirli bir denklem sisteminin çözümleri.

Cevap: (2; 1);

Cebirsel toplama yöntemi

Bu yöntem, yerine koyma yöntemi gibi, doğrusal denklem sistemlerini çözmek için kullanıldığı 7. sınıf cebir dersinden size tanıdık geliyor. Aşağıdaki örneği kullanarak yöntemin özünü hatırlayalım.

Örnek 2. Denklem sistemini çözme


Sistemin ilk denkleminin tüm terimlerini 3 ile çarpalım ve ikinci denklemi değiştirmeden bırakalım:
Sistemin ikinci denklemini birinci denkleminden çıkarın:


Orijinal sistemin iki denkleminin cebirsel olarak toplanması sonucunda verilen sistemin birinci ve ikinci denklemlerinden daha basit bir denklem elde edildi. Bu daha basit denklemle, belirli bir sistemin herhangi bir denklemini, örneğin ikincisini değiştirme hakkına sahibiz. Daha sonra verilen denklem sistemi daha basit bir sistemle değiştirilecektir:


Bu sistem ikame yöntemi kullanılarak çözülebilir. Bulduğumuz ikinci denklemden sistemin ilk denkleminde y yerine bu ifadeyi yerine koyarsak, şunu elde ederiz:


X'in bulunan değerlerini formülde değiştirmeye devam ediyor

Eğer x = 2 ise

Böylece sisteme iki çözüm bulduk:

Yeni değişkenleri tanıtma yöntemi

8. sınıf cebir dersinde tek değişkenli rasyonel denklemleri çözerken yeni bir değişken ekleme yöntemiyle tanıştınız. Denklem sistemlerini çözmek için bu yöntemin özü aynıdır, ancak teknik nokta Aşağıdaki örneklerde tartışacağımız görmenin bazı özellikleri vardır.

Örnek 3. Denklem sistemini çözme

Yeni bir değişken tanıtalım.Daha sonra sistemin ilk denklemi daha fazla şekilde yeniden yazılabilir. basit biçimde: Bu denklemi t değişkeni için çözelim:


Bu değerlerin her ikisi de koşulu karşılar ve dolayısıyla köklerdir rasyonel denklem t değişkenli. Ama bu ya x = 2y'yi bulduğumuz yer anlamına gelir, ya da
Böylece, yeni bir değişken ekleme yöntemini kullanarak, görünüşte oldukça karmaşık olan sistemin ilk denklemini iki daha basit denklem halinde "katmanlaştırmayı" başardık:

x = 2 y; y - 2x.

Sıradaki ne? Ve sonra ikisinin her biri aldı basit denklemler henüz hatırlamadığımız x 2 - y 2 = 3 denklemine sahip bir sistemde tek tek ele alınması gerekir. Başka bir deyişle, problem iki denklem sisteminin çözümünden ibarettir:

Birinci sisteme, ikinci sisteme çözüm bulmamız ve ortaya çıkan tüm değer çiftlerini cevaba dahil etmemiz gerekiyor. İlk denklem sistemini çözelim:

Burada her şey hazır olduğuna göre, yerine koyma yöntemini kullanalım: sistemin ikinci denkleminde x yerine 2y ifadesini koyalım. Aldık


x = 2y olduğundan sırasıyla x 1 = 2, x 2 = 2 buluruz. Böylece verilen sistemin iki çözümü elde edilir: (2; 1) ve (-2; -1). İkinci denklem sistemini çözelim:

Tekrar yerine koyma yöntemini kullanalım: sistemin ikinci denkleminde y yerine 2x ifadesini yazalım. Aldık


Bu denklemin kökleri yoktur, yani denklem sisteminin çözümü yoktur. Bu nedenle cevaba yalnızca ilk sistemin çözümlerinin dahil edilmesi gerekir.

Cevap: (2; 1); (-2;-1).

İki değişkenli iki denklem sistemini çözerken yeni değişkenler ekleme yöntemi iki versiyonda kullanılır. İlk seçenek: Sistemin yalnızca bir denkleminde yeni bir değişken tanıtılır ve kullanılır. Örnek 3'te olan da tam olarak budur. İkinci seçenek: Sistemin her iki denkleminde iki yeni değişken tanıtılır ve aynı anda kullanılır. Örnek 4'te de durum böyle olacaktır.

Örnek 4. Denklem sistemini çözme

İki yeni değişkeni tanıtalım:

O zaman şunu dikkate alalım

Bu, verilen sistemi çok daha basit bir biçimde yeniden yazmanıza olanak tanır, ancak yeni a ve b değişkenlerine göre:


a = 1 olduğundan, a + 6 = 2 denkleminden şunu buluruz: 1 + 6 = 2; 6=1. Böylece a ve b değişkenleriyle ilgili olarak bir çözüm elde ettik:

X ve y değişkenlerine dönersek bir denklem sistemi elde ederiz


Bu sistemi çözmek için cebirsel toplama yöntemini uygulayalım:


O zamandan beri 2x + y = 3 denkleminden şunları buluyoruz:
Böylece x ve y değişkenleriyle ilgili olarak tek bir çözüm elde ettik:


Bu paragrafı kısa ama oldukça ciddi bir teorik konuşmayla bitirelim. Çeşitli denklemleri çözme konusunda zaten biraz deneyim kazandınız: doğrusal, ikinci dereceden, rasyonel, irrasyonel. Bir denklem çözmenin ana fikrinin, bir denklemden diğerine, daha basit ama verilene eşdeğer olana yavaş yavaş geçmek olduğunu biliyorsunuz. Önceki paragrafta iki değişkenli denklemler için eşdeğerlik kavramını tanıttık. Bu kavram aynı zamanda denklem sistemleri için de kullanılır.

Tanım.

X ve y değişkenlerine sahip iki denklem sistemi, çözümleri aynıysa veya her iki sistemin de çözümü yoksa eşdeğer olarak adlandırılır.

Bu bölümde tartıştığımız her üç yöntem de (yer değiştirme, cebirsel toplama ve yeni değişkenlerin tanıtılması) eşdeğerlik açısından kesinlikle doğrudur. Başka bir deyişle, bu yöntemleri kullanarak, bir denklem sistemini daha basit ancak orijinal sisteme eşdeğer başka bir denklem sistemiyle değiştiriyoruz.

Denklem sistemlerini çözmek için grafiksel yöntem

Denklem sistemlerini ikame yöntemi, cebirsel toplama ve yeni değişkenlerin tanıtılması gibi yaygın ve güvenilir yollarla nasıl çözeceğimizi zaten öğrendik. Şimdi önceki derste incelediğiniz yöntemi hatırlayalım. Yani bildiklerinizi tekrarlayalım grafiksel yöntemçözümler.

Denklem sistemlerini grafiksel olarak çözme yöntemi, belirli bir sisteme dahil olan ve bir arada bulunan belirli denklemlerin her biri için bir grafiğin oluşturulmasıdır. koordinat uçağı ve ayrıca bu grafiklerin noktalarının kesişme noktalarını bulmanın gerekli olduğu yer. Bu denklem sistemini çözmek için bu noktanın koordinatları vardır (x; y).

Şunu unutmamak gerekir ki grafik sistemi denklemler ya tek bir taneye sahip olma eğilimindedir doğru karar Ya sonsuz sayıda çözüm var ya da hiç çözüm yok.

Şimdi bu çözümlerin her birine daha ayrıntılı olarak bakalım. Dolayısıyla, bir denklem sisteminin, sistemin denklemlerinin grafikleri olan doğrular kesişmesi durumunda benzersiz bir çözümü olabilir. Eğer bu çizgiler paralelse, o zaman böyle bir denklem sisteminin kesinlikle hiçbir çözümü yoktur. Sistemin denklemlerinin doğrudan grafikleri çakışırsa, böyle bir sistem birçok çözüm bulmayı sağlar.

Şimdi 2 bilinmeyenli iki denklemden oluşan bir sistemi grafiksel yöntemle çözmek için kullanılan algoritmaya bakalım:

Öncelikle 1. denklemin grafiğini oluşturuyoruz;
İkinci adım, ikinci denklemle ilgili bir grafik oluşturmak olacaktır;
Üçüncü olarak grafiklerin kesişim noktalarını bulmamız gerekiyor.
Sonuç olarak denklem sisteminin çözümü olacak her kesişme noktasının koordinatlarını elde ederiz.

Bir örnek kullanarak bu yönteme daha ayrıntılı olarak bakalım. Bize çözülmesi gereken bir denklem sistemi veriliyor:


Denklemleri çözme

1. Öncelikle şu denklemin grafiğini oluşturacağız: x2+y2=9.

Ancak denklemlerin bu grafiğinin orijinde merkezi olan bir daire olacağını ve yarıçapının üçe eşit olacağını belirtmeliyiz.

2. Bir sonraki adımımız şu şekilde bir denklemin grafiğini çizmek olacaktır: y = x – 3.

Bu durumda düz bir çizgi çizip (0;−3) ve (3;0) noktalarını bulmalıyız.


3. Bakalım elimizde ne var. Doğrunun çemberi A ve B noktalarından ikisinde kestiğini görüyoruz.

Şimdi bu noktaların koordinatlarını arıyoruz. Koordinatların (3;0) A noktasına, koordinatların (0;−3) ise B noktasına karşılık geldiğini görüyoruz.

Peki sonuç olarak ne elde ederiz?

Doğrunun daireyi kesmesi durumunda elde edilen (3;0) ve (0;−3) sayıları sistemin her iki denkleminin de çözümleridir. Ve bundan, bu sayıların aynı zamanda bu denklem sisteminin çözümleri olduğu sonucu çıkıyor.

Yani bu çözümün cevabı (3;0) ve (0;−3) sayılarıdır.