Farklı tabanlara sahip logaritmaların toplanmasına örnekler. Logaritma. Temel logaritmik kimlik

Dahili

b sayısının (b > 0) a tabanına (a > 0, a ≠ 1) logaritması– b'yi elde etmek için a sayısının yükseltilmesi gereken üs.

b'nin 10 tabanındaki logaritması şu şekilde yazılabilir: günlük(b) ve e tabanına göre logaritma (doğal logaritma) ln(b).

Logaritma problemlerini çözerken sıklıkla kullanılır:

Logaritmanın özellikleri

Dört ana var logaritmanın özellikleri.

a > 0, a ≠ 1, x > 0 ve y > 0 olsun.

Özellik 1. Çarpımın logaritması

Ürünün logaritması toplamına eşit logaritmalar:

log a (x ⋅ y) = log a x + log a y

Özellik 2. Bölümün logaritması

Bölümün logaritması logaritma farkına eşittir:

log a (x / y) = log a x – log a y

Özellik 3. Gücün logaritması

Derecenin logaritması gücün ve logaritmanın çarpımına eşittir:

Logaritmanın tabanı derece ise o zaman başka bir formül uygulanır:

Özellik 4. Kökün logaritması

Bu özellik, kuvvetin n'inci kökü 1/n'nin kuvvetine eşit olduğundan, bir kuvvetin logaritması özelliğinden elde edilebilir:

Bir tabandaki logaritmayı başka bir tabandaki logaritmaya dönüştürme formülü

Bu formül aynı zamanda logaritmalarla ilgili çeşitli görevleri çözerken sıklıkla kullanılır:

Özel durum:

Logaritmaların karşılaştırılması (eşitsizlikler)

Logaritma altında aynı tabanlara sahip iki f(x) ve g(x) fonksiyonumuz olsun ve aralarında bir eşitsizlik işareti olsun:

Bunları karşılaştırmak için önce logaritmanın tabanına bakmanız gerekir:

  • a > 0 ise f(x) > g(x) > 0
  • 0 ise< a < 1, то 0 < f(x) < g(x)

Logaritmalarla ilgili problemler nasıl çözülür: örnekler

Logaritmalarla ilgili sorunlar Matematikte 11. sınıf için Görev 5 ve Görev 7'de Birleşik Devlet Sınavına dahil olan görevleri web sitemizde uygun bölümlerde bulabilirsiniz. Ayrıca matematik görev bankasında logaritmalı görevler bulunur. Tüm örnekleri sitede arama yaparak bulabilirsiniz.

Logaritma nedir

Logaritmalar her zaman dikkate alınmıştır karmaşık konu bir okul matematik dersinde. Logaritmanın birçok farklı tanımı vardır, ancak bazı nedenlerden dolayı ders kitaplarının çoğu bunlardan en karmaşık ve başarısız olanı kullanır.

Logaritmayı basit ve net bir şekilde tanımlayacağız. Bunu yapmak için bir tablo oluşturalım:

Yani ikinin kuvvetlerine sahibiz.

Logaritmalar - özellikler, formüller, nasıl çözüleceği

Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı gücünü artırmanız gerekir. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x argümanının a tabanı, x sayısını elde etmek için a sayısının yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı ile log 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1 günlük 2 4 = 2 günlük 2 8 = 3 günlük 2 16 = 4 günlük 2 32 = 5 günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmaya çalışın. Tabloda 5 sayısı yok ama mantık, logaritmanın aralıkta bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем daha fazla derece iki, sayı ne kadar büyükse.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırır. Can sıkıcı yanlış anlamaları önlemek için resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Logaritmalar nasıl sayılır

Tanımı bulduk; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, bir derecenin rasyonel bir üsle tanımlanmasından kaynaklanır ve logaritmanın tanımı buna indirgenir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir kabul edilebilir değerler aralığı(ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒x > 0, a > 0, a ≠ 1.

B sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2 −1.

Ancak şimdi yalnızca logaritmanın VA'sını bilmenin gerekli olmadığı sayısal ifadeleri ele alıyoruz. Tüm kısıtlamalar, görevlerin yazarları tarafından zaten dikkate alınmıştır. Ancak logaritmik denklemler ve eşitsizlikler devreye girdiğinde DL gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi logaritmaları hesaplamak için genel şemaya bakalım. Üç adımdan oluşur:

  1. A tabanını ve x argümanını mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

İşte bu! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın birden büyük olması gerekliliği çok önemlidir: bu, hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Aynısı ondalık sayılar: Bunları hemen normal olanlara dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. Önceki paragraftan logaritmanın sayılmadığı anlaşılmaktadır;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; bunu asal çarpanlara ayırmanız yeterli. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Şunu da belirtelim ki biz kendimiz asal sayılar her zaman kendilerinin kesin dereceleridir.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

x argümanının 10 tabanına göre logaritması, yani X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; lg100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında "Lg 0.01'i bul" gibi bir ifade göründüğünde şunu bilin: bu bir yazım hatası değil. Bu bir ondalık logaritmadır. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. bu yaklaşık Doğal logaritma hakkında.

x argümanının e tabanına göre logaritması, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x.

Birçok kişi şunu soracaktır: e sayısı nedir? Bu irrasyonel bir sayıdır; kesin değeri bulunup yazılamaz. Sadece ilk rakamları vereceğim:
e = 2,718281828459…

Bu sayının ne olduğu ve neden gerekli olduğu konusunda ayrıntıya girmeyeceğiz. e'nin taban olduğunu unutmayın doğal logaritma:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir sayının doğal logaritması rasyonel sayı mantıksız. Elbette birlik hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Ayrıca bakınız:

Logaritma. Logaritmanın özellikleri (logaritmanın gücü).

Bir sayı logaritma olarak nasıl temsil edilir?

Logaritmanın tanımını kullanıyoruz.

Logaritma, logaritma işaretinin altındaki sayıyı elde etmek için tabanın yükseltilmesi gereken bir üsdür.

Bu nedenle, belirli bir c sayısını a tabanına göre logaritma olarak temsil etmek için, logaritmanın işaretinin altına logaritmanın tabanıyla aynı tabana sahip bir kuvvet koymanız ve bu c sayısını üs olarak yazmanız gerekir:

Kesinlikle herhangi bir sayı logaritma olarak temsil edilebilir - pozitif, negatif, tam sayı, kesirli, rasyonel, irrasyonel:

Bir testin veya sınavın stresli koşullarında a ve c'yi karıştırmamak için aşağıdaki ezberleme kuralını kullanabilirsiniz:

aşağıda olan aşağı iner, yukarıda olan ise yukarı çıkar.

Örneğin, 2 sayısını 3 tabanına göre logaritma olarak temsil etmeniz gerekir.

Elimizde iki sayımız var - 2 ve 3. Bu sayılar logaritmanın işaretinin altına yazacağımız taban ve üslerdir. Geriye bu sayılardan hangisinin derece tabanına, hangisinin üsse kadar yazılması gerektiğini belirlemek kalıyor.

Bir logaritma gösteriminde 3 tabanı en alttadır, yani ikiyi 3 tabanına göre logaritma olarak temsil ettiğimizde tabana da 3 yazacağız.

2, üçten büyüktür. Ve ikinci derecenin gösteriminde üçün üstüne, yani üslü olarak yazıyoruz:

Logaritmalar. Giriş seviyesi.

Logaritmalar

Logaritma pozitif sayı B dayalı A, Nerede a > 0, a ≠ 1, sayının yükseltilmesi gereken üs olarak adlandırılır A almak için B.

logaritmanın tanımı kısaca şu şekilde yazılabilir:

Bu eşitlik aşağıdakiler için geçerlidir: b > 0, a > 0, a ≠ 1. Genellikle denir logaritmik özdeşlik.
Bir sayının logaritmasını bulma işlemine denir logaritma ile.

Logaritmanın özellikleri:

Ürünün logaritması:

Bölümün logaritması:

Logaritma tabanını değiştirmek:

Derecenin logaritması:

Kökün logaritması:

Güç tabanlı logaritma:





Ondalık ve doğal logaritmalar.

Ondalık logaritma sayılar bu sayının logaritmasını 10 tabanına çağırır ve   lg yazar B
Doğal logaritma sayılara o sayının tabana göre logaritması denir e, Nerede e- yaklaşık olarak 2,7'ye eşit irrasyonel bir sayı. Aynı zamanda ln yazıyorlar B.

Cebir ve geometri üzerine diğer notlar

Logaritmanın temel özellikleri

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log a x ve log a y. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma log a x verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar uygun olduklarını ancak karar vererek değerlendirmek mümkündür. logaritmik denklemler ve eşitsizlikler.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir.

Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir temele geçiş formülleri gibi, ana logaritmik özdeşlik bazen mümkün olan tek çözüm budur.

Görev. İfadenin anlamını bulun:

Log 25 64 = log 5 8 olduğuna dikkat edin - basitçe logaritmanın tabanından ve argümanından kareyi aldık. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. log a a = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. log a 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü 0 = 1, tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesire bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

En yaygın logaritmalardan bazıları, tabanın on, üstel veya ikiye eşit olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve iki tabanının bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya ters türev logaritması ilişkiyle belirlenir.

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için, sadece birkaç yaygın örnek vereceğim. okul müfredatı ve üniversiteler.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritmanın farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık ifade bir takım kuralların kullanılması basitleştirilmiştir

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra, bilginizi eşit derecede önemli başka bir konuya, logaritmik eşitsizliklere genişleteceğiz...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesire bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen= günlük A (X · sen);
  2. kayıt A X- günlük A sen= günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır ("Logaritma nedir" dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için CÖyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8 olduğuna dikkat edin - basitçe logaritmanın tabanından ve argümanından kareyi aldık. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. kayıt A A= 1 logaritmik bir birimdir. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfırdır. Temel A Herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

İlkel düzey cebirin unsurlarından biri logaritmadır. İsim geliyor Yunan dili“sayı” veya “kuvvet” kelimesinden gelir ve son sayıyı bulmak için tabandaki sayının ne kadar yükseltilmesi gerektiği anlamına gelir.

Logaritma türleri

  • log a b – b sayısının a tabanına göre logaritması (a > 0, a ≠ 1, b > 0);
  • log b – ondalık logaritma (10 tabanına göre logaritma, a = 10);
  • ln b – doğal logaritma (e tabanına göre logaritma, a = e).

Logaritmalar nasıl çözülür?

B'nin a tabanına göre logaritması, b'nin a tabanına yükseltilmesini gerektiren bir üstür. Elde edilen sonuç şu şekilde telaffuz edilir: "b'nin a tabanına göre logaritması." Logaritmik problemlerin çözümü, sayıların verilen kuvvetini belirtilen sayılardan belirlemeniz gerektiğidir. Logaritmayı belirlemek veya çözmek ve gösterimin kendisini dönüştürmek için bazı temel kurallar vardır. Bunları kullanarak logaritmik denklemler çözülür, türevler bulunur, integraller çözülür ve diğer birçok işlem gerçekleştirilir. Temel olarak logaritmanın çözümü onun basitleştirilmiş gösterimidir. Aşağıda temel formüller ve özellikler verilmiştir:

Herhangi bir a için; a > 0; a ≠ 1 ve herhangi bir x için; y > 0.

  • a log a b = b – temel logaritmik özdeşlik
  • 1 = 0'ı günlüğe kaydet
  • log a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , k ≠ 0 için
  • log a x = log a c x c
  • log a x = log b x/ log b a – yeni bir tabana geçme formülü
  • log a x = 1/log x a


Logaritmalar nasıl çözülür - çözmek için adım adım talimatlar

  • İlk önce gerekli denklemi yazın.

Lütfen unutmayın: Taban logaritması 10 ise, giriş kısaltılır ve sonuçta ondalık logaritma elde edilir. Eğer buna değerse doğal sayı e, sonra bunu doğal logaritmaya indirgeyerek yazıyoruz. Bu, tüm logaritmaların sonucunun, b sayısını elde etmek için temel sayının yükseltildiği kuvvet olduğu anlamına gelir.


Çözüm doğrudan bu derecenin hesaplanmasında yatmaktadır. Bir ifadeyi logaritmayla çözmeden önce kurala göre yani formüller kullanılarak sadeleştirilmesi gerekir. Yazıda biraz geriye giderek ana kimlikleri bulabilirsiniz.

İki farklı sayıya ancak aynı tabanlara sahip logaritmalar eklenirken ve çıkarılırken, sırasıyla b ve c sayılarının çarpımı veya bölümü olan bir logaritma ile değiştirin. Bu durumda başka bir üsse geçme formülünü uygulayabilirsiniz (yukarıya bakın).

Logaritmayı basitleştirmek için ifadeler kullanırsanız dikkate alınması gereken bazı sınırlamalar vardır. Ve bu şudur: a logaritmasının tabanı yalnızca pozitif bir sayıdır, ancak bire eşit değildir. a gibi b sayısı da sıfırdan büyük olmalıdır.

Bir ifadeyi basitleştirerek logaritmayı sayısal olarak hesaplayamayacağınız durumlar vardır. Böyle bir ifadenin bir anlamı yoktur çünkü kuvvetlerin çoğu irrasyonel sayılardır. Bu durumda sayının kuvvetini logaritma olarak bırakın.



Logaritma kavramı ve temel logaritmik özdeşlik

Logaritma kavramı ve temel logaritmik özdeşlik yakından ilişkilidir çünkü Matematiksel gösterimde logaritmanın tanımı şudur.

Temel logaritmik özdeşlik, logaritmanın tanımından kaynaklanır:

Tanım 1

Logaritma$n$ üssünü çağırırlar, yükseltildiğinde $a$ sayıları $b$ sayısını alır.

Not 1

Üstel denklem$a^n=b$ için $a > 0$, $a \ne 1$'ın pozitif olmayan $b$ için çözümü yoktur ve pozitif $b$ için tek bir kökü vardır. Bu kök denir $b$ sayısının $a$ tabanına göre logaritması ve şunu yazın:

$a^(\log_(a) b)=b$.

Tanım 2

İfade

$a^(\log_(a) b)=b$

isminde temel logaritmik kimlik$a,b > 0$, $a \ne 1$ olması koşuluyla.

Örnek 1

$17^(\log_(17) 6)=6$;

$e^(\ln⁡13) =13$;

$10^(\lg23)=23$.

Temel logaritmik kimlik

Ana logaritmik özdeşlik denir çünkü logaritmalarla çalışırken neredeyse her zaman kullanılır. Ek olarak, logaritmanın temel özellikleri onun yardımıyla kanıtlanmıştır.

Örnek 2

$7^5=16,807$, dolayısıyla $\log_(7)16,807=5$.

$3^(-5)=\frac(1)(243)$, dolayısıyla $\log_(3)\frac(1)(243)=-5$.

$11^0=1$, dolayısıyla $\log_(11)⁡1=0$.

düşünelim temel logaritmik özdeşliğin bir sonucu:

Tanım 3

Aynı tabanlara sahip iki logaritma eşitse logaritmik ifadeler eşittir:

eğer $\log_(a)⁡b=\log_(a)⁡c$ ise $b=c$.

düşünelim kısıtlamalar Logaritmik kimlik için kullanılanlar:

    Çünkü birliği herhangi bir güce yükselttiğimizde her zaman bir elde ederiz ve $x=\log_(a)⁡b$ eşitliği yalnızca $b=1$ için mevcuttur, o zaman $\log_(1)⁡1$ herhangi biri olacaktır gerçek sayı . Bu belirsizliği önlemek için $a \ne 1$ alın.

    Tanıma göre, $a=0$'ın logaritması yalnızca $b=0$ için mevcut olabilir. Çünkü Sıfırın herhangi bir üssünü aldığımızda her zaman sıfır elde ederiz, o zaman $\log_(0)⁡0$ herhangi bir gerçek sayı olabilir. Bu belirsizliği önlemek için $a \ne 0$'ı alın. $a rasyonel ve mantıksız logaritma değerleri, çünkü rasyonel ve irrasyonel üssü olan bir derece yalnızca pozitif bazlar için hesaplanabilir. Bu durumu önlemek için $a > 0$ alın.

    $b > 0$, $a > 0$ koşulundan kaynaklanır, çünkü $x=\log_(a)⁡b$ ve pozitif bir a sayısının kuvveti her zaman pozitif olacaktır.

Temel logaritmik özdeşlik genellikle logaritmik ifadeleri basitleştirmek için kullanılır.

Örnek 3

$81^(\log_(9) 7)$ hesaplayın.

Çözüm.

Temel logaritmik özdeşliğin kullanılabilmesi için logaritmanın tabanı ile kuvvetlerinin aynı olması gerekir. Derecenin tabanını şu şekilde yazalım:

Artık şunu yazabiliriz:

$81^(\log_(9)7)=(9^2)^(\log_(9)7)=$

Power özelliğini kullanalım:

$=9^(2 \cdot \log_(9)7)=9^(\log_(9)7) \cdot 9^(\log_(9)7)=$

temel logaritmik özdeşlik artık her faktöre uygulanabilir:

$=7 \cdot 7=49$.

Not 2

Temel logaritmik özdeşliği uygulamak için, logaritmanın tabanını logaritma işaretinin altında görünen ifadeyle değiştirmeye de başvurabilirsiniz; bunun tersi de geçerlidir.

Örnek 4

$7^(\frac(1)(\log_(11) 7))$ hesaplayın.

Çözüm.

$7^(\frac(1)(\log_(11) 7))=7^(\log_(7) 11)=11$.

Cevap: $11$.

Örnek 5

$7^(\frac(3)(\log_(11) 7))$ hesaplayın.